python – 如何子类化大pandasDataFrame?

栏目: Python · 发布时间: 6年前

内容简介:http://stackoverflow.com/questions/22155951/how-to-subclass-pandas-dataframe
分类大pandas类似乎是一个常见的需求,但我找不到关于这个问题的参考. (看起来,大pandas的开发人员还在努力: https://github.com/pydata/pandas/issues/60

).

有一些SO线程的主题,但我希望有人在这里可以提供一个更系统的帐户,目前最好的方式,子类化pandas.DataFrame满足两个,我认为一般要求:

import numpy as np
import pandas as pd

class MyDF(pd.DataFrame):
    # how to subclass pandas DataFrame?
    pass

mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)  # <class '__main__.MyDF'>

# Requirement 1: Instances of MyDF, when calling standard methods of DataFrame,
# should produce instances of MyDF.
mydf_sub = mydf[['A','C']]
print type(mydf_sub)  # <class 'pandas.core.frame.DataFrame'>

# Requirement 2: Attributes attached to instances of MyDF, when calling standard 
# methods of DataFrame, should still attach to the output.
mydf.myattr = 1
mydf_cp1 = MyDF(mydf)
mydf_cp2 = mydf.copy()
print hasattr(mydf_cp1, 'myattr')  # False
print hasattr(mydf_cp2, 'myattr')  # False

对于分类大pandasSeries有什么显着的差异?谢谢.

对于要求1,只需定义_constructor:

import pandas as pd
import numpy as np

class MyDF(pd.DataFrame):
    @property
    def _constructor(self):
        return MyDF


mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)

mydf_sub = mydf[['A','C']]
print type(mydf_sub)

我认为需求2没有简单的解决方案,我想你需要定义__init__,复制或者在_constructor中做一些事情,例如:

import pandas as pd
import numpy as np

class MyDF(pd.DataFrame):
    _attributes_ = "myattr1,myattr2"

    def __init__(self, *args, **kw):
        super(MyDF, self).__init__(*args, **kw)
        if len(args) == 1 and isinstance(args[0], MyDF):
            args[0]._copy_attrs(self)

    def _copy_attrs(self, df):
        for attr in self._attributes_.split(","):
            df.__dict__[attr] = getattr(self, attr, None)

    @property
    def _constructor(self):
        def f(*args, **kw):
            df = MyDF(*args, **kw)
            self._copy_attrs(df)
            return df
        return f

mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)

mydf_sub = mydf[['A','C']]
print type(mydf_sub)

mydf.myattr1 = 1
mydf_cp1 = MyDF(mydf)
mydf_cp2 = mydf.copy()
print mydf_cp1.myattr1, mydf_cp2.myattr1

http://stackoverflow.com/questions/22155951/how-to-subclass-pandas-dataframe


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Pro JavaScript Design Patterns

Pro JavaScript Design Patterns

Dustin Diaz、Ross Harmes / Apress / 2007-12-16 / USD 44.99

As a web developer, you’ll already know that JavaScript™ is a powerful language, allowing you to add an impressive array of dynamic functionality to otherwise static web sites. But there is more power......一起来看看 《Pro JavaScript Design Patterns》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

随机密码生成器
随机密码生成器

多种字符组合密码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具