深入理解JavaScript原型链与继承

栏目: JavaScript · 发布时间: 5年前

内容简介:原型链一直都是一个在JS中比较让人费解的知识点,但是在面试中经常会被问到,这里我来做一个总结吧,首先引入一个关系图:1.构造函数: JS中所有函数都可以作为构造函数,前提是被new操作符操作;2.实例: parent1 接收了new Parent(),parent1可以称之为实例;

原型链一直都是一个在JS中比较让人费解的知识点,但是在面试中经常会被问到,这里我来做一个总结吧,首先引入一个关系图:

深入理解JavaScript原型链与继承

一.要理解原型链,首先可以从上图开始入手,图中有三个概念:

1.构造函数: JS中所有函数都可以作为构造函数,前提是被new操作符操作;

function Parent(){
    this.name = 'parent';
}
//这是一个JS函数

var parent1 = new Parent()
//这里函数被new操作符操作了,所以我们称Parent为一个构造函数;
复制代码

2.实例: parent1 接收了new Parent(),parent1可以称之为实例;

3.原型对象: 构造函数有一个prototype属性,这个属性会初始化一个原型对象;

二.弄清楚了这三个概念,下面我们来说说这三个概念的关系(参考上图):

1.通过new操作符作用于JS函数,那么就得到了一个实例;

2.构造函数会初始化一个prototype,这个prototype会初始化一个原型对象,那么原型对象是怎么知道自己是被哪个函数初始化的呢?原来原型对象会有一个constructor属性,这个属性指向了构造函数;

3.那么关键来了实例对象是怎么和原型对象关联起来的呢?原来实例对象会有一个__proto__属性,这个属性指向了该实例对象的构造函数对应的原型对象;

4.假如我们从一个对象中去找一个属性name,如果在当前对象中没有找到,那么会通过__proto__属性一直往上找,直到找到Object对象还没有找到name属性,才证明这个属性name是不存在,否则只要找到了,那么这个属性就是存在的,从这里可以看出JS对象和上级的关系就像一条链条一样,这个称之为原型链;

5.如果看到这里还没理解原型链,可以从下面我要说到继承来理解,因为原型继承就是基于原型链;

三.new操作符的工作原理

废话不多说,直接上代码
var newObj = function(func){
    var t = {}
    t.prototype = func.prototype
    var o = t
    var k =func.call(o);
    if(typeof k === 'object'){
        return k;
    }else{
        return o;
    }
}
var parent1 = newObj(Parent)等价于new操作

1.一个新对象被创建,它继承自func.prototype。
2.构造函数func 被执行,执行的时候,相应的参数会被传入,同时上下文(this) 会被指定为这个新实例。
3.如果构造函数返回了一个新对象,那么这个对象会取代整个new出来的结果,如果构造函数没有返回对象,
那么new出来的结果为步骤1创建的对象。
复制代码

继承

一.构造函数实现继承(构造继承)

function Parent(){
    this.name = 'parent1'
    this.play = [1,2,3]
}
    
function Child{
    Parent.call(this);//apply
    this.type = 'parent2';
}
Parent.prototype.id = '1'
var child1 = new Child()
console.log(child1.name)//parent1
console.log(child1.id)//undefined

//以下代码看完继承方式2,再回过头来看
var child2 = new Child();
child1.play[0] = 2;
console.log(child2.play)//[1,2,3]

从上面构造继承的代码可以看出,构造继承实现了继承,
打印出来父级的name属性,但是实例对象并没有访问到父级原型上面到属性;
复制代码

二.原型链实现继承

function Parent(){
    this.name = 'parent'
    this.play = [1,2,3]
}
function Child(){
    this.type = 'child';
}
Child.prototype = new Parent();
Parent.prototype.id = '1';
var child1 = new Child();    
console.log(child1.name)//parent1
console.log(child1.id)//1

从这里可以看出,原型继承弥补了构造继承到缺点,继承了原型上到属性;
但是下面再做一个操作:
var child2 = new Child();
child1.play[0] = 2;
console.log(child2.play)//[2,2,3]
这里我只是改变了实例对象child1到play数组,但是实例打印实例对象child2到paly数组,发现也跟着变化
了,所以可以得出结论,原型链继承引用类型到属性,在所有实例对象上面改变该属性,所有实例对象该属性都会
变化,这样肯定就存在问题,现在我们回到继承方式1(构造继承),会发现构造继承不会存在这个问题,所以
其实构造继承和原型链继承完全可以互补,由此我们引入第三种继承方式;

额外解释:这里通过一个原型链继承,我们再来回顾一下对原型链的理解,上面代码,我们进行了一个操作:
Child.prototype = new Parent();
这个操作把父类的实例赋值给子类的原型,然后结合上面原型链的关系图,我们再来理一下(为了阅读方便,复
制上图到此处):
复制代码
深入理解JavaScript原型链与继承

现在我们可以把图中到实例看成child1,首先如果要找child1实例对象中的name属性,那么我首先到Child本身去找,发现没有找到name属性,因为Child函数里面只有一个type属性,那么通过__proto__找到Child的原型对象,而刚才我们做了一个操作:

Child.prototype = new Parent(); 这个操作把父类的实例给了Child的原型,所以通过这个我们就可以找到父级的name,这就是原型链,一层一层的,像一个链条;

三.组合继承

function Parent(){
    this.name = 'parent1'
    this.play = [1,2,3]
}
    
function Child{
    Parent.call(this);//apply
    this.type = 'parent2';
}
Child.prototype = new Parent();
Parent.prototype.id = '1'
var child1 = new Child()
console.log(child1.name)//parent1
console.log(child1.id)//1
var child2 = new Child();
child1.play[0] = 2;
console.log(child2.play)//[1,2,3]

从上面代码可以看出,组合继承就是把构造继承和原型链继承组合在一起,把他们的优势互补,从而弥补了各自的
缺点;那么组合继承就完美了吗?我们继续思考,从代码中可以发现,我们调用了两次Parent函数,一次是
new Parent(),一次是Parent.call(this),是否可以优化呢?我们引入第四种继承方式;
复制代码

四.组合继承(优化1)

function Parent(){
    this.name = 'parent1'
    this.play = [1,2,3]
}
    
function Child{
    Parent.call(this);//apply
    this.type = 'parent2';
}
Child.prototype = Parent.prototype;//这里改变了
Parent.prototype.id = '1'
var child1 = new Child()
console.log(child1.name)//parent1
console.log(child1.id)//1
var child2 = new Child();
child1.play[0] = 2;
console.log(child2.play)//[1,2,3]

我们改成Child.prototype = Parent.prototype,这样就只调用一次Parent了,解决了继承方式3的问题,
好吧,我们继续思考,这样就没有问题了吗,我们做如下操作:
console.log(Child.prototype.constructor)//Parent
这里我们打印发现Child的原型的构造器成了Parent,按照我们的理解应该是Child,这就造成了构造器紊乱,
所以我们引入第五种继承优化
复制代码

五.组合继承(优化2)

function Parent(){
    this.name = 'parent1'
    this.play = [1,2,3]
}
    
function Child{
    Parent.call(this);//apply
    this.type = 'parent2';
}
Child.prototype = Parent.prototype;
Child.prototype.constructor = Child//这里改变了
Parent.prototype.id = '1'
var child1 = new Child()
console.log(child1.name)//parent1
console.log(child1.id)//1
var child2 = new Child();
child1.play[0] = 2;
console.log(child2.play)//[1,2,3]

现在我们打印
console.log(Child.prototype.constructor)//Child
这里就解决了问题,但是我们继续打印
console.log(Parent.prototype.constructor)//Child
发现父类的构造器也出现了紊乱,所有我们通过一个中间值来解决这个问题,最终版本为:

function Parent(){
    this.name = 'parent1'
    this.play = [1,2,3]
}
    
function Child{
    Parent.call(this);//apply
    this.type = 'parent2';
}

var obj = {};
obj.prototype = Parent.prototype;
Child.prototype = obj;
//上面三行代码也可以简化成Child.prototype = Object.create(Parent.prototype);
Child.prototype.constructor = Child

console.log(Child.prototype.constructor)//Child
console.log(Parent.prototype.constructor)//Parent
用一个中间obj,完美解决了这个问题复制代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法数论

算法数论

裴定一、祝跃飞 / 科学出版社 / 2002年09月 / 19.00

本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数学证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科学院研究生院信息安全国家重点实验室和广州大学作为硕士研究生教材使用。 本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人......一起来看看 《算法数论》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具