内容简介:核心是在于如何快速的依据那么开源的搜索引擎包Lucene是怎么来设计的呢?Lucene采用了一种称为FST(Finite State Transducer)的结构来构建词典,这个结构保证了时间和空间复杂度的均衡,是Lucene的核心功能之一。FST类似一种TRIE树。
核心是在于如何快速的依据 查询词 快速的查找到所有的相关文档,这也是 倒排索引(Inverted Index) 的核心思想。那么如何设计一个快速的(常量,或者1)定位词典的数据结构就显得尤其重要。简单来说,我们可以采用HashMap, TRIE, Binary Search Tree, Tenary Search Tree等各种数据结构来实现。
那么开源的搜索引擎包Lucene是怎么来设计的呢?Lucene采用了一种称为FST(Finite State Transducer)的结构来构建词典,这个结构保证了时间和空间复杂度的均衡,是Lucene的核心功能之一。
关于FST(Finite State Transducer)
FST类似一种TRIE树。
使用FSM(Finite State Machines)作为数据结构
FSM(Finite State Machines)有限状态机: 表示有限个状态(State)集合以及这些状态之间 转移 和动作的数学模型。其中一个状态被标记为 开始状态 ,0个或更多的状态被标记为 final状态 。
一个FSM同一时间只处于1个状态。FSM很通用,可以用来表示多种处理过程,下面的FSM描述了《小猫咪的一天》。
其中“睡觉”或者“吃饭”代表的是 状态 ,而“提供食物”或者“东西移动”则代表了 转移 。图中这个FSM是对小猫活动的一个抽象(这里并没有刻意写开始状态或者final状态),小猫咪不能同时的即处于“玩耍”又处于“睡觉”状态,并且从一个状态到下一个状态的转换只有一个输入。“睡觉”状态并不知道是从什么状态转换过来的,可能是“玩耍”,也可能是”猫砂窝”。
如果《小猫咪的一天》这个FSM接收以下的输入:
- 提供食物
- 有大声音
- 安静
- 消化食物
那么我们会明确的知道,小猫咪会这样依次变化状态: 睡觉->吃饭->躲藏->吃饭->猫砂窝.
以上只是一个现实中的例子,下面我们来看如何实现一个Ordered Sets,和Map结构。
Ordered Sets
Ordered Sets是一个有序集合。通常一个有序集合可以用二叉树、B树实现。无序的集合使用hash table来实现. 这里,我们用一个 确定无环有限状态接收机(Deterministric acyclic finite state acceptor, FSA) 来实现。
FSA是一个FSM(有限状态机)的一种,特性如下:
- 确定:意味着指定任何一个状态,只可能最多有一个转移可以遍历到?。
- 无环: 不可能重复遍历同一个状态
- 接收机:有限状态机只“接受”特定的输入序列,并终止于final状态。
下面来看,我们如何来表示只有一个key:” jul “ 的集合。FSA是这样的:
当查询这个FSA是否包含“jul”的时候,按字符依序输入。
- 输入j,FSA从0->1
- 输入u, FSA从1->2
- 输入l,FSA从2->3
这个时候,FSA处于final状态3,所以“jul”是在这个集合的。
设想一下如果输入“jun”,在状态2的时候 无法移动 了,就知道不在这个集合里了。
设想如何输入“ju”, 在状态2的时候,已经没有输入了。而状态2并不是 final状态 ,所以也不在这个集合里。
值得指出的是,查找这个key是否在集合内的时间复杂度,取决于key的长度,而不是集合的大小。
现在往FSA里再加一个key. FSA此时包含keys:”jul”和“mar”。
start状态0此时有了2个转移: j 和 m 。因此,输入key:”mar”,首先会跟随m来转移。 final状态是“jul”和“mar” 共享 的。这使得我们能用 更少的空间 来表示 更多的信息 。
当我们在这个FSA里加入“jun”,那么它和“jul”有共同的前缀“ju”:
这里变化很小,没有增加新的状态,只是多了一个转移而已。
下面来看一下由“october”,“november”,”december”构成的FSA.
它们有共同的后缀“ber”,所以在FSA只出现了1次。 其中2个有共同的后缀”ember”,也只出现了1次。
那么我们如何来遍历一个FSA表示的所有key呢,我们以前面的”jul”,“jun”,”mar”为例:
遍历算法是这样的:
- 初始状态0, key=””
- ->1, key=”j”
- ->2, key=”ju”
- ->3, key=”jul”, 找到jul
- 2<-, key=”ju”
- ->3, key=”jun”, 找到jun
- 2<-, key=”ju”
- 1<-, key=”j”
- 0<-, key=””
- ->4, key=”m”
- ->5, key=”ma”,
- ->3, key=”mar”,找到mar
这个算法时间复杂度O(n),n是集合里所有的key的大小, 空间复杂度O(k),k是结合内最长的key字段length。
Ordered maps
Ordered maps就像一个普通的map,只不过它的key是有序的。我们来看一下如何使用 确定无环状态转换器(Deterministic acyclic finite state transducer, FST) 来实现它。
FST是也一个有限状态机(FSM),具有这样的特性:
- 确定:意味着指定任何一个状态,只可能最多有一个转移可以遍历到。
- 无环: 不可能重复遍历同一个状态
- transducer:接收特定的序列,终止于final状态,同时会 输出一个值 。
FST和FSA很像,给定一个key除了能回答是否存在,还能输出一个 关联的值 。
下面来看这样的一个输入:“jul:7”, 7是jul关联的值,就像是一个map的entry.
这和对应的有序集合基本一样,除了第一个0->1的转换j关联了一个值7. 其他的转换u和l, 默认关联 的值是 0 ,这里不予展现。
那么当我们查找key:”jul”的时候,大概流程如下:
- 初始状态0
- 输入j, FST从0->1, value=7
- 输入u, FST从1->2, value=7+0
- 输入l,FST从2->3, value=7+0+0
此时,FST处于final状态3,所以存在jul,并且给出output是7.
我们再看一下,加入mar:3之后,FST变成什么样:
同样的很简单, 需要注意 的是mar自带的值3放在了第1个转移上。这只是为了算法更简单而已,事实上,可以放在其他转移上。
如果共享前缀,FST会发生什么呢?这里我们继续加入jun:6。
和sets一样,jun和jul共享状态3, 但是有一些变化。
- 0->1转移,输出从7变成了6
- 2->3转移,输入l,输出值变成了1。
这个输出变化是很重要的,因为他改变了查找jul输出值的过程。
- 初始状态0
- 输入j, FST从0->1, value=6
- 输入u, FST从1->2, value=6+0
- 输入l,FST从2->3, value=6+0+1
最终的值仍旧是7,但是走的路径却是不一样的。
那查找jun是不是也是正确的呢?
- 初始状态0
- 输入j, FST从0 -> 1, value=6
- 输入u,FST从1 -> 2, value=6+0
- 输入n,FST从2 -> 3, value=6+0+0
从上可知,jun的查询也是正确的。FST保证了不同的转移有 唯一 的值,但同时也复用了大部分的数据结构。
实现共享状态的 关键点 是:每一个key,都在FST中对应一个唯一的路径。因此,对于任何一个特定的key,总会有一些value的转移组合使得路径是唯一的。我们需要做的就是如何来在转移中 分配 这些组合。
key输出的共享机制同样适用于共同前缀和共同后缀。比如我们有tuesday:3和thursday:5这样的FST:
2个key有共同的前缀 t ,共同后缀 sday 。关联的2个value同样有共同的前缀。3可以写做 3+0 ,而5可以写作: 3+2 。 这样很好的让实现了关联value的共享。
上面的这个例子,其实有点简单化,并且局限。假如这些关联的value并不是int呢? 实际上,FST对于关联value(outputs)的类型是要求必须有以下操作(method)的。
- 加(Addition)
- 减 (Subtraction)
- 取前缀 (对于整数来说,就是min)
FST的构建
前面,一直没有提到如何构建FST。构建相对于遍历来说,还是有些复杂的。
为了简单化,我们假设set或者map里的数据是按字典序加入的。这个假设是很沉重的限制,不过我们会讲如何来缓解它。
为了构建FSM,我们先来看看TRIE树是如何构建的。
TRIE树的构建
TRIE可以看做是一个FSA,唯一的一个不同是TRIE只共享前缀,而FSA不仅共享前缀还共享后缀。
假设我们有一个这样的Set: mon,tues,thurs。FSA是这样的:
相应的TRIE则是这样的,只共享了前缀。
TRIE有重复的3个final状态3,8,11. 而8,11都是s转移,是可以合并的。
构建一个TRIE树是相当简单的。插入1个key,只需要做简单的查找就可以了。如果输入先结束,那么当前状态设置为final;如果无法转移了,那么就直接创建新的转移和状态。不要忘了最后一个创建的状态设置为final就可以了。
FST的构建
构建FST在很大程度上和构建FSA是一样的,主要的不同点是,怎么样在转移上 放置和共享outputs 。
仍旧使用前面提到的例子,mon,tues和thurs,并给他们关联相应的星期数值2,3和5.
从第1个key, mon:2开始:
这里虚线代表,在后续的insert过程中,FST可能有变化。
需要关注的是,这里只是把2放在了第1个转移上。技术上说,下面这样分配也是正确的。
只不过,把output放在靠近start状态的算法更容易写而已。
下面继续把thurs:5插入:
就像FSA的insert一样,插入thurs之后,我们可以知道FST的mon部分(蓝色)就不会再变了。
由于mon和thurs没有共同的前缀,只是简单的2个map中的key. 所以他们的output value可以直接放置在start状态的第1个转移上。
下面,继续插入tues:3,
这引起了新的变化。有一部分被 冻住 了,并且知道以后不会再修改了。output value也出现了重新的分配。因为tues的output是3,并且tues和thurs有共同的前缀t, 所以5和3的prefix操作得出的结果就是3. 状态0->状态4的value被分配为3,状态4->状态5设置为2。
我们再插入更多的key, 这次插入tye:99看发生什么情况:
插入tye,导致”es”部分被冻住,同时由于共享前缀t, 状态4->状态9的输出是99-3=96。
最后一步,结束了,再执行一次冻住操作。
最终的FST长这样:
Lucene FST
上一部分,对于FST的概念以及构建进行了详细的介绍。本部分将对Lucene FST的实现以及具体进行详细的分析。
Lucene关于FST相关的代码在package: org.apache.lucene.util.fst
。
从 org.apache.lucene.util.fst.Builder
看起,这个是构建FST的Builder:
Builder通过泛型T,从而可以构建包含不同类型的FST。我们重点关注属性。
从其中插入数据 add()
方法看起:
/** Add the next input/output pair. The provided input * must be sorted after the previous one according to * {@link IntsRef#compareTo}. It's also OK to add the same * input twice in a row with different outputs, as long * as {@link Outputs} implements the {@link Outputs#merge} * method. Note that input is fully consumed after this * method is returned (so caller is free to reuse), but * output is not. So if your outputs are changeable (eg * {@link ByteSequenceOutputs} or {@link * IntSequenceOutputs}) then you cannot reuse across * calls. */ public void add(IntsRef input, T output) throws IOException { ... // prefixLenPlus1是计算出input和lastInput具有公共前缀的位置 final int prefixLenPlus1 = pos1+1; // 1.新插入的节点放到frontier数组,UnCompileNode表明是新插入的,以后还可能会变化,还未放入FST内。 if (frontier.length < input.length+1) { final UnCompiledNode<T>[] next = ArrayUtil.grow(frontier, input.length+1); for(int idx=frontier.length;idx<next.length;idx++) { next[idx] = new UnCompiledNode<>(this, idx); } frontier = next; } // minimize/compile states from previous input's // orphan'd suffix // 2.从prefixLenPlus1, 进行freeze冰冻操作, 添加并构建最小FST freezeTail(prefixLenPlus1); // init tail states for current input // 3.将当前input剩下的部分插入,构建arc转移(前缀是共用的,不用添加新的状态)。 for(int idx=prefixLenPlus1;idx<=input.length;idx++) { frontier[idx-1].addArc(input.ints[input.offset + idx - 1], frontier[idx]); frontier[idx].inputCount++; } final UnCompiledNode<T> lastNode = frontier[input.length]; if (lastInput.length() != input.length || prefixLenPlus1 != input.length + 1) { lastNode.isFinal = true; lastNode.output = NO_OUTPUT; } // push conflicting outputs forward, only as far as // needed // 4.如果有冲突的话,重新分配output值 for(int idx=1;idx<prefixLenPlus1;idx++) { final UnCompiledNode<T> node = frontier[idx]; final UnCompiledNode<T> parentNode = frontier[idx-1]; final T lastOutput = parentNode.getLastOutput(input.ints[input.offset + idx - 1]); assert validOutput(lastOutput); final T commonOutputPrefix; final T wordSuffix; if (lastOutput != NO_OUTPUT) { // 使用common方法,计算output的共同前缀 commonOutputPrefix = fst.outputs.common(output, lastOutput); assert validOutput(commonOutputPrefix); // 使用subtract方法,计算重新分配的output wordSuffix = fst.outputs.subtract(lastOutput, commonOutputPrefix); assert validOutput(wordSuffix); parentNode.setLastOutput(input.ints[input.offset + idx - 1], commonOutputPrefix); node.prependOutput(wordSuffix); } else { commonOutputPrefix = wordSuffix = NO_OUTPUT; } output = fst.outputs.subtract(output, commonOutputPrefix); assert validOutput(output); } ... }
通过注释,我们看到input是经过 排序 的,也就是ordered。否则生成的就不是最小的FST。另外如果NO_OUTPUT就退化为FSA了,不用执行第4步重新分配output了。
其中 freezeTail
方法就是将不再变化的部分进行冰冻,又叫compile,把UnCompileNode,给构建进FST里。进入到FST是先进行compileNode, 然后addNode进去的。
总结以下,加入节点过程:
-
- 新插入input放入frontier,这里还没有加入FST
-
- 依据当前input, 对上次插入数据进行freezeTail操作, 放入FST内
-
- 构建input的转移(Arc)关系
-
- 解决Output冲突,重新分配output,保证路径统一(NO_OUTPUT,不执行)
最后在 finish
方法里,执行 freezeTail(0)
, 把所有的input构建进FST内。
另外,值得注意的是Lucene里定义的 Outputs 类型:
其中3个method是Outputs接口定义的,有11个不同类型的实现:
T add(T prefix, T output); T subtract(T output, T inc); T common(T output1, T output2)
完全满足我们上个部分的限制,可见就是基于之前算法的一个完整的实现。
除了在Term词典这块有应用,FST在整个lucene内部使用的也是很广泛的,基本把hashmap记性了替换。
场景大概有以下:
- 自动联想:suggester
- charFilter: mappingcharFilter
- 同义词过滤器
- hunspell拼写检查词典
总结
FST,不但能 共享前缀 还能 共享后缀 。不但能判断查找的key是否存在,还能给出响应的输入output。 它在时间复杂度和空间复杂度上都做了最大程度的优化,使得Lucene能够将Term Dictionary完全加载到内存,快速的定位Term找到响应的output(posting倒排列表)。
参考文档:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 大讲堂 | 计算机辅助词典编纂 ——以异体字词典为例
- 前端词典 —— 滚动穿透
- 中文金融领域情感词典构建
- c# – 使用JavaScriptSerializer序列化词典
- 【前端词典】4 种滚动吸顶实现方式的比较
- 【前端词典】学习 Vue 源码的必要知识储备
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java高并发编程详解
汪文君 / 机械工业出版社 / 2018-6 / 89.00元
本书共分为四个部分:部分详细地介绍了Java多线程的基本用法和各个API的使用,并且着重介绍了线程与Java虚拟机内存之间的关系。第二部分由线程上下文类加载器方法引入,介绍为什么在线程中要有上下文类加载器的方法函数,从而掌握类在JVM的加载和初始化的整个过程。第三部分主要围绕着volatile关键字展开,在该部分中我们将会了解到现代CPU的架构以及Java的内存模型(JMM)。后一部分,主要站在架......一起来看看 《Java高并发编程详解》 这本书的介绍吧!