由一个组逐列串联

栏目: JavaScript · 发布时间: 6年前

内容简介:翻译自:https://stackoverflow.com/questions/34778422/progressive-concatenation-of-a-column-by-a-group

参见英文答案 > Cumulatively paste (concatenate) values grouped by another variable 4个

假设我有这个输入:

ID     date_1      date_2     str
1            1    2010-07-04  2008-01-20   A
2            2    2015-07-01  2011-08-31   C
3            3    2015-03-06  2013-01-18   D
4            4    2013-01-10  2011-08-30   D
5            5    2014-06-04  2011-09-18   B
6            5    2014-06-04  2011-09-18   B
7            6    2012-11-22  2011-09-28   C
8            7    2014-06-17  2013-08-04   A
10           7    2014-06-17  2013-08-04   B
11           7    2014-06-17  2013-08-04   B

我想通过组变量ID逐步连接str列的值,如以下输出所示:

ID     date_1      date_2     str
1            1    2010-07-04  2008-01-20   A
2            2    2015-07-01  2011-08-31   C
3            3    2015-03-06  2013-01-18   D
4            4    2013-01-10  2011-08-30   D
5            5    2014-06-04  2011-09-18   B
6            5    2014-06-04  2011-09-18   B,B
7            6    2012-11-22  2011-09-28   C
8            7    2014-06-17  2013-08-04   A
10           7    2014-06-17  2013-08-04   A,B
11           7    2014-06-17  2013-08-04   A,B,B

我尝试使用此代码的ave()函数:

within(table, {
  Emp_list <- ave(str, ID, FUN = function(x) paste(x, collapse = ","))
})

但它提供了以下输出,这不是我想要的:

ID      date_1     date_2      str
1         1    2010-07-04 2008-01-20     A
2         2    2015-07-01 2011-08-31     C
3         3    2015-03-06 2013-01-18     D
4         4    2013-01-10 2011-08-30     D
5         5    2014-06-04 2011-09-18     B,B
6         5    2014-06-04 2011-09-18     B,B
7         6    2012-11-22 2011-09-28     C
8         7    2014-06-17 2013-08-04     A,B,B
10        7    2014-06-17 2013-08-04     A,B,B
11        7    2014-06-17 2013-08-04     A,B,B

当然,我想避免循环,因为我在大型数据库上工作.

使用Reduce()的ave()怎么样? Reduce()函数允许我们在计算结果时累积结果.因此,如果我们使用paste()运行它,我们可以累积粘贴的字符串.

f <- function(x) {
    Reduce(function(...) paste(..., sep = ", "), x, accumulate = TRUE)
}

df$str <- with(df, ave(as.character(str), ID, FUN = f)

它给出了更新的数据帧df

ID     date_1     date_2     str
1   1 2010-07-04 2008-01-20       A
2   2 2015-07-01 2011-08-31       C
3   3 2015-03-06 2013-01-18       D
4   4 2013-01-10 2011-08-30       D
5   5 2014-06-04 2011-09-18       B
6   5 2014-06-04 2011-09-18    B, B
7   6 2012-11-22 2011-09-28       C
8   7 2014-06-17 2013-08-04       A
10  7 2014-06-17 2013-08-04    A, B
11  7 2014-06-17 2013-08-04 A, B, B

注意:函数(…)paste(…,sep =“,”)也可以是函数(x,y)paste(x,y,sep =“,”). (感谢Pierre Lafortune)

翻译自:https://stackoverflow.com/questions/34778422/progressive-concatenation-of-a-column-by-a-group


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

从零开始学创业大全集

从零开始学创业大全集

阳飞扬 / 中国华侨出版社 / 2011-10-1 / 29.80元

为了让每一个怀揣梦想走上创业之路的有志者能在最短的时间内叩开创业的大门,了解创业的流程和方法,从而找到适合自己的创业之路,我们精心编写了这本《从零开始学创业大全集》。阳飞扬编著的《从零开始学创业大全集(超值白金版)》从创业准备、创业团队的组建、创业项目和商业模式的选择、创业计划书的制作、创业资金的筹集、企业的经营策略、资本运作以及产品营销方法、危机应对策略等方面,全面系统地阐述了创业的基本理论与实......一起来看看 《从零开始学创业大全集》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

SHA 加密
SHA 加密

SHA 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具