kafka-如何保证消息的可靠性与一致性

栏目: 后端 · 发布时间: 5年前

内容简介:在zk中会保存AR(Assigned Replicas)列表,其中包含了分区所有的副本,其中 AR = ISR+OSR在kafka中有一个partition recovery机制用于恢复挂掉的partition。每个Partition会在磁盘记录一个RecoveryPoint(恢复点), 记录已经flush到磁盘的最大offset。当broker fail 重启时,会进行loadLogs。 首先会读取该Partition的RecoveryPoint,找到包含RecoveryPoint点上的segment及以

在zk中会保存AR(Assigned Replicas)列表,其中包含了分区所有的副本,其中 AR = ISR+OSR

  • ISR(in sync replica):是kafka动态维护的一组同步副本,在ISR中有成员存活时,只有这个组的成员才可以成为leader,内部保存的为每次提交信息时必须同步的副本(acks = all时),每当leader挂掉时,在ISR集合中选举出一个follower作为leader提供服务,当ISR中的副本被认为坏掉的时候,会被踢出ISR,当重新跟上leader的消息数据时,重新进入ISR。
  • OSR(out sync replica): 保存的副本不必保证必须同步完成才进行确认,OSR内的副本是否同步了leader的数据,不影响数据的提交,OSR内的follower尽力的去同步leader,可能数据版本会落后。

kafka如何控制需要同步多少副本才可以返回确定到生产者消息才可用?

  • 当写入到kakfa时,生产者可以选择是否等待0(只需写入leader),1(只需同步一个副本) 或 -1(全部副本)的消息确认(这里的副本指的是ISR中的副本)。
  • 需要注意的是“所有副本确认”并不能保证全部分配副本已收到消息。默认情况下,当acks=all时,只要当前所有在同步中的副本(ISR中的副本)收到消息,就会进行确认。所以Kafka的交付承诺可以这样理解:对没有提交成功的消息不做任何交付保证,而对于ISR中至少有一个存活的完全同步的副本的情况下的“成功提交”的消息保证不会丢失。

对于kafka节点活着的条件是什么?

  • 第一点:一个节点必须维持和zk的会话,通过zk的心跳检测实现
  • 第二点:如果节点是一个slave也就是复制节点,那么他必须复制leader节点不能太落后。这里的落后可以指两种情况
    replica.lag.time.max
    

kafka分区partition挂掉之后如何恢复?

在kafka中有一个partition recovery机制用于恢复挂掉的partition。

每个Partition会在磁盘记录一个RecoveryPoint(恢复点), 记录已经flush到磁盘的最大offset。当broker fail 重启时,会进行loadLogs。 首先会读取该Partition的RecoveryPoint,找到包含RecoveryPoint点上的segment及以后的segment, 这些segment就是可能没有完全flush到磁盘segments。然后调用segment的recover,重新读取各个segment的msg,并重建索引。

优点:

  1. 以segment为单位管理Partition数据,方便数据生命周期的管理,删除过期数据简单
  2. 在程序崩溃重启时,加快recovery速度,只需恢复未完全flush到磁盘的segment即可

什么原因导致副本与leader不同步的呢?

  • 慢副本:在一定周期时间内follower不能追赶上leader。最常见的原因之一是I / O瓶颈导致follower追加复制消息速度慢于从leader拉取速度。
  • 卡住副本:在一定周期时间内follower停止从leader拉取请求。follower replica卡住了是由于GC暂停或follower失效或死亡。
  • 新启动副本:当用户给主题增加副本因子时,新的follower不在同步副本列表中,直到他们完全赶上了leader日志。

一个partition的follower落后于leader足够多时,被认为不在同步副本列表或处于滞后状态。

正如上述所说,现在kafka判定落后有两种,副本滞后判断依据是副本落后于leader最大消息数量(replica.lag.max.messages)或replicas响应partition leader的最长等待时间( replica.lag.time.max.ms )。前者是用来检测缓慢的副本,而后者是用来检测失效或死亡的副本

如果ISR内的副本挂掉怎么办?

  • 两种选择:服务直接不可用一段时间等待ISR中副本恢复(祈祷恢复的副本有数据吧) 或者 直接选用第一个副本(这个副本不一定在ISR中)作为leader,这两种方法也是在可用性和一致性之间的权衡。
  • 服务不可用方式这种适用在不允许消息丢失的情况下使用,适用于一致性大于可用性,可以有两种做法
    • 设置ISR最小同步副本数量,如果ISR的当前数量大于设置的最小同步值,那么该分区才会接受写入,避免了ISR同步副本过少。如果小于最小值那么该分区将不接收写入。这个最小值设置只有在acks = all的时候才会生效。
    • 禁用unclean-leader选举,当isr中的所有副本全部不可用时,不可以使用OSR 中的副本作为leader,直接使服务不可用,直到等到ISR 中副本恢复再进行选举leader。
  • 直接选择第一个副本作为leader的方式,适用于可用性大于一致性的场景,这也是kafka在isr中所有副本都死亡了的情况采用的默认处理方式,我们可以通过配置参数 unclean.leader.election.enable 来禁止这种行为,采用第一种方法。

那么ISR是如何实现同步的呢?

broker的offset大致分为三种:base offset、high watemark(HW)、log end offset(LEO)

  • base offset:起始位移,replica中第一天消息的offset
  • HW:replica高水印值,副本中最新一条已提交消息的位移。leader 的HW值也就是实际已提交消息的范围,每个replica都有HW值,但仅仅leader中的HW才能作为标示信息。什么意思呢,就是说当按照参数标准成功完成消息备份(成功同步给follower replica后)才会更新HW的值,代表消息理论上已经不会丢失,可以认为“已提交”。
  • LEO:日志末端位移,也就是replica中下一条待写入消息的offset,注意哈,是下一条并且是待写入的,并不是最后一条。这个LEO个人感觉也就是用来标示follower的同步进度的。 所以HW代表已经完成同步的数据的位置,LEO代表已经写入的最新位置,只有HW位置之前的才是可以被外界访问的数据。 现在就来看一下之前,broker从收到消息到返回响应这个黑盒子里发生了什么。
    kafka-如何保证消息的可靠性与一致性
  1. broker 收到producer的请求
  2. leader 收到消息,并成功写入,LEO 值+1
  3. broker 将消息推给follower replica,follower 成功写入 LEO +1 …
  4. 所有LEO 写入后,leader HW +1
  5. 消息可被消费,并成功响应

上述过程从下面的图便可以看出:

kafka-如何保证消息的可靠性与一致性

解决上一个问题后,接下来就是kafka如何选用leader呢?

选举leader常用的方法是多数选举法,比如 Redis 等,但是kafka没有选用多数选举法,kafka采用的是quorum(法定人数)。

quorum是一种在分布式系统中常用的算法,主要用来通过数据冗余来保证数据一致性的投票算法。在kafka中该算法的实现就是ISR,在ISR中就是可以被选举为leader的法定人数。

  • 在leader宕机后,只能从ISR列表中选取新的leader,无论ISR中哪个副本被选为新的leader,它都知道HW之前的数据,可以保证在切换了leader后,消费者可以继续看到HW之前已经提交的数据。
  • HW的截断机制:选出了新的leader,而新的leader并不能保证已经完全同步了之前leader的所有数据,只能保证HW之前的数据是同步过的,此时所有的follower都要将数据截断到HW的位置,再和新的leader同步数据,来保证数据一致。 当宕机的leader恢复,发现新的leader中的数据和自己持有的数据不一致,此时宕机的leader会将自己的数据截断到宕机之前的hw位置,然后同步新leader的数据。宕机的leader活过来也像follower一样同步数据,来保证数据的一致性。

如果感觉这篇文章对您有所帮助,请点击一下喜欢或者关注博主,您的喜欢和关注将是我前进的最大动力!

refer:effectivecoding 官网 博客


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构与算法分析

数据结构与算法分析

Mark Allen Weiss / 冯舜玺 / 电子工业出版社 / 2016-8 / 89.00元

本书是数据结构和算法分析的经典教材,书中使用主流的程序设计语言C++作为具体的实现语言。书中内容包括表、栈、队列、树、散列表、优先队列、排序、不相交集算法、图论算法、算法分析、算法设计、摊还分析、查找树算法、k-d树和配对堆等。本书把算法分析与C++程序的开发有机地结合起来,深入分析每种算法,内容全面、缜密严格,并细致讲解精心构造程序的方法。一起来看看 《数据结构与算法分析》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具