深入浅出Zookeeper(二)

栏目: 服务器 · 发布时间: 4年前

内容简介:Zookeeper特点Zookeeper节点类型如上文《Zookeeper架构及FastLeaderElection机制》所述,Zookeeper 提供了一个类似于 Linux 文件系统的树形结构。该树形结构中每个节点被称为 znode ,可按如下两个维度分类
编辑推荐:

本文来自于技术世界,本文结合实例演示了使用Zookeeper实现分布式锁与领导选举的原理与具体实现方法。

Zookeeper特点

Zookeeper节点类型

如上文《Zookeeper架构及FastLeaderElection机制》所述,Zookeeper 提供了一个类似于 Linux 文件系统的树形结构。该树形结构中每个节点被称为 znode ,可按如下两个维度分类

Persist vs. Ephemeral

Persist节点,一旦被创建,便不会意外丢失,即使服务器全部重启也依然存在。每个 Persist 节点即可包含数据,也可包含子节点

Ephemeral节点,在创建它的客户端与服务器间的 Session 结束时自动被删除。服务器重启会导致 Session 结束,因此 Ephemeral 类型的 znode 此时也会自动删除

Sequence vs. Non-sequence

Non-sequence节点,多个客户端同时创建同一 Non-sequence 节点时,只有一个可创建成功,其它匀失败。并且创建出的节点名称与创建时指定的节点名完全一样

Sequence节点,创建出的节点名在指定的名称之后带有10位10进制数的序号。多个客户端创建同一名称的节点时,都能创建成功,只是序号不同

Zookeeper语义保证

Zookeeper 简单高效,同时提供如下语义保证,从而使得我们可以利用这些特性提供复杂的服务。

顺序性客户端发起的更新会按发送顺序被应用到 Zookeeper 上

原子性 更新操作要么成功要么失败,不会出现中间状态

单一系统镜像一个客户端无论连接到哪一个服务器都能看到完全一样的系统镜像(即完全一样的树形结构)。注:根据上文《Zookeeper架构及FastLeaderElection机制》介绍的 ZAB 协议,写操作并不保证更新被所有的 Follower 立即确认,因此通过部分 Follower 读取数据并不能保证读到最新的数据,而部分 Follwer 及 Leader 可读到最新数据。如果一定要保证单一系统镜像,可在读操作前使用 sync 方法。

可靠性一个更新操作一旦被接受即不会意外丢失,除非被其它更新操作覆盖

最终一致性写操作最终(而非立即)会对客户端可见

Zookeeper Watch机制

所有对 Zookeeper 的读操作,都可附带一个 Watch 。一旦相应的数据有变化,该 Watch 即被触发。Watch 有如下特点

主动推送Watch被触发时,由 Zookeeper 服务器主动将更新推送给客户端,而不需要客户端轮询。

一次性数据变化时,Watch 只会被触发一次。如果客户端想得到后续更新的通知,必须要在 Watch 被触发后重新注册一个 Watch。

可见性如果一个客户端在读请求中附带 Watch,Watch 被触发的同时再次读取数据,客户端在得到 Watch 消息之前肯定不可能看到更新后的数据。换句话说,更新通知先于更新结果。

顺序性如果多个更新触发了多个 Watch ,那 Watch 被触发的顺序与更新顺序一致。

分布式锁与领导选举关键点

最多一个获取锁 / 成为Leader

对于分布式锁(这里特指排它锁)而言,任意时刻,最多只有一个进程(对于单进程内的锁而言是单线程)可以获得锁。

对于领导选举而言,任意时间,最多只有一个成功当选为Leader。否则即出现脑裂(Split brain)

锁重入 / 确认自己是Leader

对于分布式锁,需要保证获得锁的进程在释放锁之前可再次获得锁,即锁的可重入性。

对于领导选举,Leader需要能够确认自己已经获得领导权,即确认自己是Leader。

释放锁 / 放弃领导权

锁的获得者应该能够正确释放已经获得的锁,并且当获得锁的进程宕机时,锁应该自动释放,从而使得其它竞争方可以获得该锁,从而避免出现死锁的状态。

领导应该可以主动放弃领导权,并且当领导所在进程宕机时,领导权应该自动释放,从而使得其它参与者可重新竞争领导而避免进入无主状态。

感知锁释放 / 领导权的放弃

当获得锁的一方释放锁时,其它对于锁的竞争方需要能够感知到锁的释放,并再次尝试获取锁。

原来的Leader放弃领导权时,其它参与方应该能够感知该事件,并重新发起选举流程。

非公平领导选举

从上面几个方面可见,分布式锁与领导选举的技术要点非常相似,实际上其实现机制也相近。本章就以领导选举为例来说明二者的实现原理,分布式锁的实现原理也几乎一致。

选主过程

假设有三个Zookeeper的客户端,如下图所示,同时竞争Leader。这三个客户端同时向Zookeeper集群注册Ephemeral且Non-sequence类型的节点,路径都为/zkroot/leader(工程实践中,路径名可自定义)。

深入浅出Zookeeper(二)

如上图所示,由于是Non-sequence节点,这三个客户端只会有一个创建成功,其它节点均创建失败。此时,创建成功的客户端(即上图中的Client 1)即成功竞选为 Leader 。其它客户端(即上图中的Client 2和Client 3)此时匀为 Follower。

放弃领导权

如果 Leader 打算主动放弃领导权,直接删除/zkroot/leader节点即可。

如果 Leader 进程意外宕机,其与 Zookeeper 间的 Session 也结束,该节点由于是Ephemeral类型的节点,因此也会自动被删除。

此时/zkroot/leader节点不复存在,对于其它参与竞选的客户端而言,之前的 Leader 已经放弃了领导权。

感知领导权的放弃

由上图可见,创建节点失败的节点,除了成为 Follower 以外,还会向/zkroot/leader注册一个 Watch ,一旦 Leader 放弃领导权,也即该节点被删除,所有的 Follower 会收到通知。

重新选举

感知到旧 Leader 放弃领导权后,所有的 Follower 可以再次发起新一轮的领导选举,如下图所示。

深入浅出Zookeeper(二)

从上图中可见

新一轮的领导选举方法与最初的领导选举方法完全一样,都是发起节点创建请求,创建成功即为 Leader,否则为 Follower ,且 Follower 会 Watch 该节点

新一轮的选举结果,无法预测,与它们在第一轮选举中的顺序无关。这也是该方案被称为非公平模式的原因

非公平模式总结

非公平模式实现简单,每一轮选举方法都完全一样

竞争参与方不多的情况下,效率高。每个 Follower 通过 Watch 感知到节点被删除的时间不完全一样,只要有一个 Follower 得到通知即发起竞选,即可保证当时有新的 Leader 被选出

给Zookeeper 集群造成的负载大,因此扩展性差。如果有上万个客户端都参与竞选,意味着同时会有上万个写请求发送给 Zookeper。如《Zookeeper架构》一文所述,Zookeeper 存在单点写的问题,写性能不高。同时一旦 Leader 放弃领导权,Zookeeper 需要同时通知上万个 Follower,负载较大。

公平领导选举

选主过程

如下图所示,公平领导选举中,各客户端均创建/zkroot/leader节点,且其类型为Ephemeral与Sequence。

深入浅出Zookeeper(二)

由于是Sequence类型节点,故上图中三个客户端均创建成功,只是序号不一样。此时,每个客户端都会判断自己创建成功的节点的序号是不是当前最小的。如果是,则该客户端为 Leader,否则即为 Follower。

在上图中,Client 1创建的节点序号为 1 ,Client 2创建的节点序号为 2,Client 3创建的节点序号为3。由于最小序号为 1 ,且该节点由Client 1创建,故Client 1为 Leader 。

放弃领导权

Leader 如果主动放弃领导权,直接删除其创建的节点即可。

如果 Leader 所在进程意外宕机,其与 Zookeeper 间的 Session 结束,由于其创建的节点为Ephemeral类型,故该节点自动被删除。

感知领导权的放弃

与非公平模式不同,每个 Follower 并非都 Watch 由 Leader 创建出来的节点,而是 Watch 序号刚好比自己序号小的节点。

在上图中,总共有 1、2、3 共三个节点,因此Client 2 Watch /zkroot/leader1,Client 3 Watch /zkroot/leader2。(注:序号应该是10位数字,而非一位数字,这里为了方便,以一位数字代替)

一旦 Leader 宕机,/zkroot/leader1被删除,Client 2可得到通知。此时Client 3由于 Watch 的是/zkroot/leader2,故不会得到通知。

重新选举

Client 2得到/zkroot/leader1被删除的通知后,不会立即成为新的 Leader 。而是先判断自己的序号 2 是不是当前最小的序号。在该场景下,其序号确为最小。因此Client 2成为新的 Leader 。

深入浅出Zookeeper(二)

这里要注意,如果在Client 1放弃领导权之前,Client 2就宕机了,Client 3会收到通知。此时Client 3不会立即成为Leader,而是要先判断自己的序号 3 是否为当前最小序号。很显然,由于Client 1创建的/zkroot/leader1还在,因此Client 3不会成为新的 Leader ,并向Client 2序号 2 前面的序号,也即 1 创建 Watch。该过程如下图所示。

深入浅出Zookeeper(二)

公平模式总结

实现相对复杂

扩展性好,每个客户端都只 Watch 一个节点且每次节点被删除只须通知一个客户端

旧 Leader 放弃领导权时,其它客户端根据竞选的先后顺序(也即节点序号)成为新 Leader,这也是公平模式的由来

延迟相对非公平模式要高,因为它必须等待特定节点得到通知才能选出新的 Leader

总结

基于 Zookeeper 的领导选举或者分布式锁的实现均基于 Zookeeper 节点的特性及通知机制。充分利用这些特性,还可以开发出适用于其它场景的分布式应用。


以上所述就是小编给大家介绍的《深入浅出Zookeeper(二)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

C语言程序设计现代方法

C语言程序设计现代方法

K. N. King / 人民邮电出版社 / 2007-11 / 55.00元

《C语言程序设计现代方法》最主要的一个目的就是通过一种“现代方法”来介绍C语言,实现客观评价C语言、强调标准化C语言、强调软件工程、不再强调“手工优化”、强调与c++语言的兼容性的目标。《C语言程序设计现代方法》分为C语言的基础特性。C语言的高级特性、C语言标准库和参考资料4个部分。每章都有“问与答”小节,给出一系列与本章内容相关的问题及其答案,此外还包含适量的习题。一起来看看 《C语言程序设计现代方法》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试