KnowledgeNet: A Benchmark for Knowledge Base Population

栏目: IT技术 · 发布时间: 5年前

内容简介:The problem of automatically augmenting a knowledge base with facts expressed in natural language is known as Knowledge Base Population (KBP). This problem has been extensively studied in the last couple of decades; however, progress has been slow in part

EMNLP 2019 paper , dataset leaderboard  and code

Knowledge bases (also known as knowledge graphs or ontologies) are valuable resources for developing intelligence applications, including search, question answering, and recommendation systems. However, high-quality knowledge bases still mostly rely on structured data curated by humans. Such reliance on human curation is a major obstacle to the creation of comprehensive, always-up-to-date knowledge bases such as the Diffbot Knowledge Graph .

The problem of automatically augmenting a knowledge base with facts expressed in natural language is known as Knowledge Base Population (KBP). This problem has been extensively studied in the last couple of decades; however, progress has been slow in part because of the lack of benchmark datasets. 

KnowledgeNet: A Benchmark for Knowledge Base Population
Knowledge Base Population (KBP) is the problem of automatically augmenting a knowledge base with facts expressed in natural language.

KnowledgeNet is a benchmark dataset for populating Wikidata with facts expressed in natural language on the web. Facts are of the form (subject; property; object), where subject and object are linked to Wikidata. For instance, the dataset contains text expressing the fact ( Gennaro Basile ; RESIDENCE; Moravia ), in the passage:

“Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brunn, in Moravia, and lived about 1756…”

KBP has been mainly evaluated via annual contests promoted by TAC . TAC evaluations are performed manually and are hard to reproduce for new systems . Unlike TAC, KnowledgeNet employs an automated and reproducible way to evaluate KBP systems at any time, rather than once a year. We hope a faster evaluation cycle will accelerate the rate of improvement for KBP.

Please refer to our EMNLP 2019 Paper for details on KnowlegeNet, but here are some takeaways:

  • State-of-the-art models (using BERT ) are far from achieving human performance (0.504 vs 0.822).
  • The traditional pipeline approach for this problem is severely limited by error propagation.
  • KnowledgeNet enables the development of end-to-end systems, which are a promising solution for addressing error propagation.

以上所述就是小编给大家介绍的《KnowledgeNet: A Benchmark for Knowledge Base Population》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python高效开发实战

Python高效开发实战

刘长龙 / 电子工业出版社 / 2016-10 / 89

也许你听说过全栈工程师,他们善于设计系统架构,精通数据库建模、通用网络协议、后端并发处理、前端界面设计,在学术研究或工程项目上能独当一面。通过对Python及其周边Web框架的学习和实践,你就可以成为这样的全能型人才。 《Python高效开发实战——Django、Tornado、Flask、Twisted》分为3部分:第1部分是基础篇,带领初学者实践Python开发环境和掌握基本语法,同时对......一起来看看 《Python高效开发实战》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具