内容简介:And that's a problem that is extremely dangerous.Machine learning, the process of teaching computer algorithms to perform new tasks by example, is poised to transform industries fromOne much-hyped area where machine learning is going to bring about societa
And that's a problem that is extremely dangerous.
Machine learning, the process of teaching computer algorithms to perform new tasks by example, is poised to transform industries from agriculture to insurance . But ML models can only be as good as the data on which they're trained.
One much-hyped area where machine learning is going to bring about societal change is in the advent of self-driving cars. But with great power comes great responsibility; a poorly trained self driving car can, quite literally , lead to human fatalities.
That's why we were surprised and concerned when we discovered that a popular dataset (5,100 stars and 1,800 forks) being used by thousands of students to build an open-source self driving car contains critical errors and omissions.
We did a hand-check of the 15,000 images in the widely used Udacity Dataset 2 and found problems with 4,986 (33%) of them. Amongst these were thousands of unlabeled vehicles, hundreds of unlabeled pedestrians, and dozens of unlabeled cyclists. We also found many instances of phantom annotations, duplicated bounding boxes, and drastically oversized bounding boxes.
Perhaps most egregiously, 217 (1.4%) of the images were completely unlabeled but actually contained cars, trucks, street lights, and/or pedestrians.
Open source datasets are great, but if the public is going to trust our community with their safety we need to do a better job of ensuring the data we're sharing is complete and accurate. If you're using public datasets in your projects, please do your due diligence and check their integrity before using them in the wild.
Thanks to their permissive licensing, we've fixed and re-released the Udacity self-driving car dataset referenced in this post in a number of formats for use in your project. If you were training a model on the original, please consider switching to using these updated annotations.
Want to be the first to know about new content like this? Subscribe .
Roboflow accelerates your computer vision workflow through automated annotation quality assurance, universal annotation format conversion (like PASCAL VOC XML to COCO JSON ), team sharing and versioning, and exports directly to file format, like TFRecords. It's free for datasets up to 1GB.
以上所述就是小编给大家介绍的《A popular self-driving car dataset is missing labels for hundreds of pedestrians》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
大数据时代的IT架构设计
IT架构设计研究组 / 电子工业出版社 / 2014-4 / 49.00元
《大数据时代的IT架构设计》以大数据时代为背景,邀请著名企业中的一线架构师,结合工作中的实际案例展开与架构相关的讨论。《大数据时代的IT架构设计》作者来自互联网、教育、传统行业等领域,分享的案例极其实用,代表了该领域较先进的架构。无论你就职于哪一行业都可以从本书中找到相关的架构经验,对您在今后的架构设计工作中都能起到很好的帮助作用。 《大数据时代的IT架构设计》适合具备一定架构基础和架构经验......一起来看看 《大数据时代的IT架构设计》 这本书的介绍吧!