GAN collaborative image inpainting

栏目: IT技术 · 发布时间: 4年前

内容简介:Sampling results for image inpainting by targeting the corrupted region. (Top) Input data with masked region (second row) Semantic Image Inpainting (third row) Heatmap highlighting visual differences between the inpainted results in the 2nd row and the ref

Collaborative Sampling for Image Inpainting

Author

  • Thevie Mortiniera

Inpainting on FASHION-MNIST

Visual Results

GAN collaborative image inpainting GAN collaborative image inpainting GAN collaborative image inpainting

Sampling results for image inpainting by targeting the corrupted region. (Top) Input data with masked region (second row) Semantic Image Inpainting (third row) Heatmap highlighting visual differences between the inpainted results in the 2nd row and the refined results in the fourth row. The closer to the red, the higher the differences (fourth row) Collaborative Image Inpainting (bottom) Original images.

Quantitative Results :

PSNR scores, from left to right in the images above :

Method Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8 Img9 Img10 Img11 Img12
Semantic Image Inpainting 13.31 21.07 25.54 29.93 28.39 28.19 28.94 25.25 27.07 34.80 20.07 34.63
Collaborative Image Inpainting 14.65 23.84 28.63 23.43 24.53 26.77 29.22 26.57 28.18 38.27 20.10 35.97

Average scores on a test set of 2000 images :

Method SSIM PSNR IS
Semantic Image Inpainting 0.813 23.713 4.160 ± 0.118
Collaborative Image Inpainting 0.834 24.478 4.184 ± 0.192

Documentation

Download dataset

The following command allow to download the FASHION-MNIST data set and create the corresponding folders as in the directory hierarchy below.

python download.py fashion_mnist

Directory hierarchy

If using an already pretrained DCGAN model, its root folder should be placed at the same hierarchy level as the collaborative-image-inpainting and Data folders, e.g below, with a pretrained model from fashion_mnist.

.
│   collaborative-image-inpainting
│   ├── src
│   │   ├── collaborator.py
│   │   ├── dataset.py
│   │   ├── dcgan.py
│   │   ├── download.py
│   │   ├── inpaint_main.py
│   │   ├── inpaint_model.py
│   │   ├── inpaint_solver.py
│   │   ├── main.py
│   │   ├── mask_generator.py
│   │   ├── ops.py
│   │   ├── policy.py
│   │   ├── solver.py
│   │   ├── tensorflow_utils.py
│   │   └── utils.py
│   │   └── utils_2.py
│   Data
│   ├── fashion_mnist
│   │   ├── train
│   │   └── val
│   fashion_mnist
│   ├── images
│   ├── inpaint
│   ├── logs
│   ├── model
│   ├── sample
│   ├── vectors

Run the app

  • First of all, one need to train a DCGAN model on the choosen dataset.
  • Then, use the pretrained DCGAN model to compute, offline, the closest latent vectors encodings of the images in the training set to be used during the collaborative sampling scheme.
  • Finally, use the pretrained DCGAN model along with the saved latent vectors to experiment and compare the collaborative image inpainting scheme against the previous semantic image inpainting method.

Training

As an example, use the following command to train the DCGAN model. Other arguments are available in the main.py file to use different parameters.

python main.py --is_train=true --iters=25000 --dataset=fashion_mnist

Offline computing of closest latent vectors encoding

python inpaint_main.py --offline=true --dataset=fashion_mnist

Experiment between the collaborative scheme and original inpainting method.

Two modes are available between [inpaint | standard] to choose between collaborative image inpainting and standard collaborative sampling scheme. Other arguments are available in the inpaint_main.py file to use different parameters.

python inpaint_main.py --mode=inpaint --dataset=fashion_mnist

Attribution / Thanks

  • This project borrowed some readme formatting and code from ChengBinJin , mostly regarding the inpainting process.
  • Most of the collaborative sampling scheme was borrowed from vita-epfl

以上所述就是小编给大家介绍的《GAN collaborative image inpainting》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

免费

免费

[美] 克里斯·安德森 / 蒋旭峰、冯斌、璩静 / 中信出版社 / 2009-9 / 39.00

在《免费:商业的未来 》这本书,克里斯·安德森认为,新型的“免费”并不是一种左口袋出、右口袋进的营销策略,而是一种把货物和服务的成本压低到零的新型卓越能力。在上世纪“免费”是一种强有力的推销手段,而在21世纪它已经成为一种全新的经济模式。 究竟什么是免费商业模式?根据克里斯·安德森的说法,这种新型的“免费”商业模式是一种建立在以电脑字节为基础上的经济学,而非过去建立在物理原子基础上的经济学。......一起来看看 《免费》 这本书的介绍吧!

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具