Post-Mortem Python Plotting

栏目: IT技术 · 发布时间: 4年前

内容简介:Next time you're in your IPython console and you get an error somewhere deep in your stack, runThat should be enough to rock the world of some readers, but there's more! The problem with pdb is it's a very limited interpreter, lacking such luxuries as tab

Next time you're in your IPython console and you get an error somewhere deep in your stack, run %debug . It's a post-mortem debugger , and it'll drop you in an interpreter right where the error happened . You can inspect all the variables, go up and down the stack, and figure out what happened.

That should be enough to rock the world of some readers, but there's more! The problem with pdb is it's a very limited interpreter, lacking such luxuries as tab completion. What about if the bug requires something more powerful? Well my friend, do I have a snippet for you:

def extract():
    """Copies the caller's environment up to your IPython session"""
    import inspect
    import ctypes 

    frames = inspect.stack()
    caller = frames[1].frame
    name, ls, gs = caller.f_code.co_name, caller.f_locals, caller.f_globals

    ipython = [f for f in inspect.stack() if f.filename.startswith('<ipython-input')][-1].frame

    ipython.f_locals.update({k: v for k, v in gs.items() if k[:2] != '__'})
    ipython.f_locals.update({k: v for k, v in ls.items() if k[:2] != '__'})

    ctypes.pythonapi.PyFrame_LocalsToFast(ctypes.py_object(ipython), ctypes.c_int(0))

extract is the single most useful function I've written in five years of working in Python. It grabs the caller's environment, finds your interpreter session in the stack, and stuffs the caller's env into that session . Here it is working in isolation:

def f():
    x = 'hello world'
    extract()

>>> f() # copies f's internals into the session
>>> print(x) # prints 'hello world'

See? It's magic enough just by itself. But in combination with %debug , it's more magic .

A Daft Example

The killer feature is when you've got some piece of numerical analysis that fails occasionally . Debugging things that fail occassionally is misery since if you knew what circumstances caused the bug, you'd probably already have fixed it. Post-mortem debugging is a lifesaver in this case, since it lets you wait for the circumstances that cause the bug to turn up naturally.

Consider this snippet,

def random_walk():
    return np.random.normal(size=1000).cumsum()

def first_positives():
    idxs = []
    for _ in range(100):
        xs = random_walk()
        idxs.append((xs > 0).nonzero()[0][0])
    return np.array(idxs)

which generates the distribution of times at which a random walk becomes positive. Most of the time it runs fine, but occasionally it throws an IndexError !

What on earth? I call %debug and get the usual prompt

> <ipython-input-36-cd128c0c6b16>(12)first_positives()
     10     for _ in range(10):
     11         xs = random_walk()
---> 12         idxs.append((xs > 0).nonzero()[0][0])
     13     return np.array(idxs)
     14 

ipdb>

and type p xs to see if there's something obviously wrong. It doesn't look like anything to me :

ipdb> p xs
array([ -0.44560791,  -1.79932944,  -2.56393172,  -3.10994348,
        -2.54914905,  -5.29201201,  -5.96402224,  -7.65870068,
        -8.34737223,  -7.12503207,  -6.90961605,  -6.87986835,
        -6.97889256,  -7.88125706,  -8.45506909,  -7.23593778,

Just a bunch of numbers. Hrm. Ok, in I type extract() , and quit the debugger. Back in my Jupyter session, xs has - magically! - appeared in my workspace, and a quick plt.plot(xs)

Post-Mortem Python Plotting

...shows that sometimes the random walk never becomes positive. D'oh. Never becomes positive means an empty array of positive indices, meaning [0] is out of bounds.

That's an artificial, facile, ridiculous example which - on purportedly less random data - happens to me three times a week. Once upon a time I'd have to commit actual thought to figuring out what scenario was leading to an out of bounds. With the help of pdb and extract , I can instead program thought-free!

Other tricks

  • You can also invoke the post mortem debugger with pdb.pm() rather than going through the %debug magic.

  • You don't have to invoke extract from the base of the stack. You can go up a few levels first, if you think the error's cause is in a different place from where it's discovered. Learning the debugger commands is absolutely worth it .

  • You don't have to wait for an error either. You can drop breakpoint() - an alias for import pdb; pdb.set_trace() - in your code anywhere to get to the debugger, or you can simply call extract directly.

  • If I'm chasing some numerical issue, I'll often set up if statements that trigger extract when values get particularly large or small.

  • I have extract and some other utilities bundled up in a personal tools package that I call aljpy . When I find myself somewhere new, I install it using pip install git+https://github.com/andyljones/aljpy.git and then call extract with import aljpy; aljpy.extract() . I wouldn't recommend using my tools package since I'll change it on a whim, but I do recommend building your own.

  • Incidentally, the code above is not version I use. I've also nailed on support for grabbing the locals of arbitrary functions and modules. It also throws an error on exit, which drops me directly back to my session where my new locals are waiting.

def extract(source=None):
    """Copies the variables of the caller up to iPython. Useful for debugging.

    .. code-block:: python

        def f():
            x = 'hello world'
            extract()

        f() # raises an error

        print(x) # prints 'hello world'

    """
    import inspect
    import ctypes 

    if source is None:
        frames = inspect.stack()
        caller = frames[1].frame
        name, ls, gs = caller.f_code.co_name, caller.f_locals, caller.f_globals
    elif hasattr(source, '__func__'):
        func = source.__func__
        name, ls, gs = func.__qualname__, (func.__closure__ or {}), func.__globals__
    elif hasattr(source, '__init__'):
        func = source.__init__.__func__
        name, ls, gs = func.__qualname__, (func.__closure__ or {}), func.__globals__
    else:
        raise ValueError(f'Don\'t support source {source}')

    ipython = [f for f in inspect.stack() if f.filename.startswith('<ipython-input')][-1].frame

    ipython.f_locals.update({k: v for k, v in gs.items() if k[:2] != '__'})
    ipython.f_locals.update({k: v for k, v in ls.items() if k[:2] != '__'})

    # Magic call to make the updates to f_locals 'stick'.
    # More info: http://pydev.blogspot.co.uk/2014/02/changing-locals-of-frame-frameflocals.html
    ctypes.pythonapi.PyFrame_LocalsToFast(ctypes.py_object(ipython), ctypes.c_int(0))

    message = 'Copied {}\'s variables to {}'.format(name, ipython.f_code.co_name)
    raise RuntimeError(message)

以上所述就是小编给大家介绍的《Post-Mortem Python Plotting》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法引论

算法引论

[美]乌迪·曼博(Udi Manber) / 黄林鹏、谢瑾奎、陆首博、等 / 电子工业出版社 / 2010-1 / 36.00元

本书是国际算法大师乌迪·曼博(Udi Manber)博士撰写的一本享有盛誉的著作。全书共分12章:第1章到第4章为介绍性内容,涉及数学归纳法、算法分析、数据结构等内容;第5章提出了与归纳证明进行类比的算法设计思想;第6章到第9章分别给出了4个领域的算法,如序列和集合的算法、图算法、几何算法、代数和数值算法;第10章涉及归约,也是第11章的序幕,而后者涉及NP完全问题;第12章则介绍了并行算法;最后......一起来看看 《算法引论》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具