Generate names using posterior probabilities

栏目: IT技术 · 发布时间: 5年前

内容简介:If you are building synthetic data and need to generate people names, this article will be a helpful guide. This article is part of a series of articles regarding the R packageInstallThe package

If you are building synthetic data and need to generate people names, this article will be a helpful guide. This article is part of a series of articles regarding the R package conjurer . You can find the first part of this serieshere.

Steps to generate people names

1. Installation

Install conjurer package by using the following code. 

install.packages("conjurer")

2. Training data Vs default data

The package conjurer provides 2 two options to generate names.

    • The first option is to provide a custom training data. 
    • The second option is to use the default training data provided by the package.

If it is people names that you are interested in generating, you are better off using the default training data. However, if you would like to generate names of  items or products (example: pharmaceutical drug names), it is recommended that you build your own training data.

The function that helps in generating names is buildNames . Let us understand the inputs of the function. This function takes the form as given below.

buildNames(dframe, numOfNames, minLength, maxLength)

In this function,

dframe is a dataframe. This dataframe must be a single column dataframe where each row contains a name. These names must only contain english alphabets(upper or lower case) from A to Z but no special characters such as “;” or non ASCII characters. If you do not pass this argument to the function, the function uses the default prior probabilities to generate the names.

numOfNames is a numeric. This specifies the number of names to be generated. It should be a non-zero natural number. 

minLength is a numeric. This specifies the minimum number of alphabets in the name. It must be a non-zero natural number .

maxLength is a numeric. This specifies the maximum number of alphabets in the name. It must be a non-zero natural number

.

3. Example

Let us run this function with an example to see how it works. Let us use the default matrix of prior probabilities for this example. The output would be a list of names as given below.

library(conjurer)
peopleNames <- buildNames(numOfNames = 3, minLength = 5, maxLength = 7)
print(peopleNames)
[1] "ellie"   "bellann" "netar"

Please note that since this is a random generator, you may get other names than displayed in the above example.

4. Consolidated code

Following is the consolidated code for your convenience.

#install latest version
install.packages("conjurer") 

#invoke library
library(conjurer)

#generate names
peopleNames <- buildNames(numOfNames = 3, minLength = 5, maxLength = 7) 

#inspect the names generated
print(peopleNames)

5. Concluding remarks

In this article, we have learnt how to use the R package conjurer and generate names. Since the algorithm relies on prior probabilities, the names that are output may not look exactly like real human names but will phonetically sound like human names. So, go ahead and give it a try. If you like to understand the underlying code that generates these names, you can explore the GitHub repository here . If you are interested in what’s coming next in this package, you can find it in the issues section here


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深度探索C++对象模型

深度探索C++对象模型

斯坦利•B.李普曼 (Stanley B. Lippman) / 侯捷 / 电子工业出版社 / 2012-1 / 69.00元

作者Lippman参与设计了全世界第一套C++编译程序cfront,这本书就是一位伟大的C++编译程序设计者向你阐述他如何处理各种explicit(明确出现于C++程序代码中)和implicit(隐藏于程序代码背后)的C++语意。 本书专注于C++面向对象程序设计的底层机制,包括结构式语意、临时性对象的生成、封装、继承,以及虚拟——虚拟函数和虚拟继承。这本书让你知道:一旦你能够了解底层实现模......一起来看看 《深度探索C++对象模型》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具