Spark一些问题集锦【持续更新】

栏目: 服务器 · 发布时间: 7年前

内容简介:Spark一些问题集锦【持续更新】

最近常跑Spark程序,主要是分布式机器学习和分布式深度学习这块,因为模型经常很大,比如VGG等,集群空余节点又不是很多,跑起来有时候会吃力,也遇到很多问题,积累一下以备后查。

错误集锦

ClosedChannelException

1 ERROR YarnClientSchedulerBackend:70 - Yarn application has already exited with state FINISHED!
2 ERROR SparkContext:91 - Error initializing SparkContext.
java.lang.IllegalStateException: Spark context stopped while waiting for backend
3 ERROR TransportClient:245 - Failed to send RPC 7202466410763583466 to /xx.xx.xx.xx:54864: java.nio.channels.ClosedChannelException
4 ERROR YarnSchedulerBackend$YarnSchedulerEndpoint:91 - Sending RequestExecutors(0,0,Map()) to AM was unsuccessful

上面这几个错误通常一起爆出。

【原因分析】

可能是分配给node的内存太小,Spark默认启动两个executor,使用每个executor的内存为1G,而数据太大,导致yarn直接Kill掉了executor,IO也一并关闭,所以出现了 ClosedChannelException 异常。

这里的错误 分析[错误1]也有可能是由于 Java 8的excessive memory allocation strategy

【解决方案】

根据 这篇文章yarn-site.xml 中添加如下配置:

<property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
</property>

<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>

或者在执行命令时附带参数: --driver-memory 5g --executor-memory 5g ,将Job可用内存显式地增大。

或者在 spark/conf/spark-defaults.conf 添加如下Poperty:

spark.driver.memory              5g
spark.executor.memory            5g

甚至可以继续添加如下Property:

spark.yarn.executor.memoryOverhead          4096
spark.yarn.driver.memoryOverhead            8192
spark.akka.frameSize                        700

Lost Executors et. al.

5. ERROR YarnScheduler:70 - Lost executor 3 on simple23: Container marked as failed: container_1490797147995_0000004 on host: simple23. Exit status: 143. Diagnostics: Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
Killed by external signal

[Stage 16:===========================================>              (6 + 2) / 8]
6. ERROR TaskSetManager:70 - Task stage 17.2 failed 4 times; aborting job
7. ERROR DistriOptimizer$:655 - Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task age 17.2 failed 4 times, most recent failure: Lost task 0.3 in stage 17.2 (TID 90, simple21, executor 4): java.util.concurrent.EnException: 

[Stage 23:>                                                         (0 + 3) / 3]
8. ERROR YarnScheduler:70 - Lost executor 4 on simple21: Container marked as failed: container_1490797147995_0004_01_000005 on host: simple21. Exit status: 143. Diagn Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
Killed by external signal

[Stage 23:>                                                         (0 + 3) / 3]
9. ERROR TransportResponseHandl- Still have 1 requests outstanding when connection from /xx.xx.xx.22:51442 is closed

【原因分析】

由报错信息可以看出,yarn丢失了executor,极有可能还是因为executor被关闭了,所以还是要检查一下自己的driver-memory和executor-memory是不是够大。

【解决方案】

如上一个

References


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

大型网站系统与Java中间件开发实践

大型网站系统与Java中间件开发实践

曾宪杰 / 电子工业出版社 / 2014-4-24 / 65.00

本书围绕大型网站和支撑大型网站架构的 Java 中间件的实践展开介绍。从分布式系统的知识切入,让读者对分布式系统有基本的了解;然后介绍大型网站随着数据量、访问量增长而发生的架构变迁;接着讲述构建 Java 中间件的相关知识;之后的几章都是根据笔者的经验来介绍支撑大型网站架构的 Java 中间件系统的设计和实践。希望读者通过本书可以了解大型网站架构变迁过程中的较为通用的问题和解法,并了解构建支撑大型......一起来看看 《大型网站系统与Java中间件开发实践》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器