Java 并发编程:多线程并发访问,同步控制

栏目: IT技术 · 发布时间: 4年前

内容简介:多线程学习的时候,要面对的第一个复杂问题就是,并发模式下变量的访问,如果不理清楚内在流程和原因,经常会出现这样一个问题:线程处理后的变量值不是自己想要的,可能还会一脸懵的说:这不合逻辑吧?多个线程访问类的成员变量,可能会带来各种问题。这里案例的流程就是并发下运算一个成员变量,程序的本意是:var=50,得到num=50,可输出的实际结果是:

一、并发问题

多线程学习的时候,要面对的第一个复杂问题就是,并发模式下变量的访问,如果不理清楚内在流程和原因,经常会出现这样一个问题:线程处理后的变量值不是自己想要的,可能还会一脸懵的说:这不合逻辑吧?

1、成员变量访问

多个线程访问类的成员变量,可能会带来各种问题。

public class AccessVar01 {
public static void main(String[] args) {
Var01Test var01Test = new Var01Test() ;
VarThread01A varThread01A = new VarThread01A(var01Test) ;
varThread01A.start();
VarThread01B varThread01B = new VarThread01B(var01Test) ;
varThread01B.start();
}
}
class VarThread01A extends Thread {
Var01Test var01Test = new Var01Test() ;
public VarThread01A (Var01Test var01Test){
this.var01Test = var01Test ;
}
@Override
public void run() {
var01Test.addNum(50);
}
}
class VarThread01B extends Thread {
Var01Test var01Test = new Var01Test() ;
public VarThread01B (Var01Test var01Test){
this.var01Test = var01Test ;
}
@Override
public void run() {
var01Test.addNum(10);
}
}
class Var01Test {
private Integer num = 0 ;
public void addNum (Integer var){
try {
if (var == 50){
num = num + 50 ;
Thread.sleep(3000);
} else {
num = num + var ;
}
System.out.println("var="+var+";num="+num);
} catch (Exception e){
e.printStackTrace();
}
}
}

这里案例的流程就是并发下运算一个成员变量,程序的本意是:var=50,得到num=50,可输出的实际结果是:

var=10;num=60
var=50;num=60

VarThread01A线程处理中进入休眠,休眠时num已经被线程VarThread01B进行一次加10的运算,这就是多线程并发访问导致的结果。

2、方法私有变量

修改上述的代码逻辑,把num变量置于方法内,作为私有的方法变量。

class Var01Test {
// private Integer num = 0 ;
public void addNum (Integer var){
Integer num = 0 ;
try {
if (var == 50){
num = num + 50 ;
Thread.sleep(3000);
} else {
num = num + var ;
}
System.out.println("var="+var+";num="+num);
} catch (Exception e){
e.printStackTrace();
}
}
}

方法内部的变量是私有的,且和当前执行方法的线程绑定,不会存在线程间干扰问题。

二、同步控制

1、Synchronized关键字

使用方式:修饰方法,或者以控制同步块的形式,保证多个线程并发下,同一时刻只有一个线程进入方法中,或者同步代码块中,从而使线程安全的访问和处理变量。如果修饰的是静态方法,作用的是这个类的所有对象。

独占锁属于悲观锁一类,synchronized就是一种独占锁,假设处于最坏的情况,只有一个线程执行,阻塞其他线程,如果并发高,处理耗时长,会导致多个线程挂起,等待持有锁的线程释放锁。

2、修饰方法

这个案例和第一个案例原理上是一样的,不过这里虽然在修改值的地方加入的同步控制,但是又挖了一个坑,在读取的时候没有限制,这个现象俗称脏读。

public class AccessVar02 {
public static void main(String[] args) {
Var02Test var02Test = new Var02Test ();
VarThread02A varThread02A = new VarThread02A(var02Test) ;
varThread02A.start();
VarThread02B varThread02B = new VarThread02B(var02Test) ;
varThread02B.start();
var02Test.readValue();
}
}
class VarThread02A extends Thread {
Var02Test var02Test = new Var02Test ();
public VarThread02A (Var02Test var02Test){
this.var02Test = var02Test ;
}
@Override
public void run() {
var02Test.change("my","name");
}
}
class VarThread02B extends Thread {
Var02Test var02Test = new Var02Test ();
public VarThread02B (Var02Test var02Test){
this.var02Test = var02Test ;
}
@Override
public void run() {
var02Test.change("you","age");
}
}
class Var02Test {
public String key = "cicada" ;
public String value = "smile" ;
public synchronized void change (String key,String value){
try {
this.key = key ;
Thread.sleep(2000);
this.value = value ;
System.out.println("key="+key+";value="+value);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void readValue (){
System.out.println("读取:key="+key+";value="+value);
}
}

在线程中,逻辑上已经修改了,只是没执行到,但是在main线程中读取的value毫无意义,需要在读取方法上也加入同步的线程控制。

3、同步控制逻辑

同步控制实现是基于Object的监视器。

  • 线程对Object的访问,首先要先获得Object的监视器 ;

  • 如果获取成功,则会独占该对象 ;

  • 其他线程会掉进同步队列,线程状态变为阻塞 ;

  • 等Object的持有线程释放锁,会唤醒队列中等待的线程,尝试重启获取对象监视器;

4、修饰代码块

说明一点,代码块包含方法中的全部逻辑,锁定的粒度和修饰方法是一样的,就写在方法上吧。同步代码块一个很核心的目的,减小锁定资源的粒度,就如同表锁和行级锁。

public class AccessVar03 {
public static void main(String[] args) {
Var03Test var03Test1 = new Var03Test() ;
Thread thread1 = new Thread(var03Test1) ;
thread1.start();
Thread thread2 = new Thread(var03Test1) ;
thread2.start();
Thread thread3 = new Thread(var03Test1) ;
thread3.start();
}
}
class Var03Test implements Runnable {
private Integer count = 0 ;
public void countAdd() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized(this) {
count++ ;
System.out.println("count="+count);
}
}
@Override
public void run() {
countAdd() ;
}
}

这里就是锁定count处理这个动作的核心代码逻辑,不允许并发处理。

5、修饰静态方法

静态方法属于类层级的方法,对象是不可以直接调用的。但是synchronized修饰的静态方法锁定的是这个类的所有对象。

public class AccessVar04 {
public static void main(String[] args) {
Var04Test var04Test1 = new Var04Test() ;
Thread thread1 = new Thread(var04Test1) ;
thread1.start();
Var04Test var04Test2 = new Var04Test() ;
Thread thread2 = new Thread(var04Test2) ;
thread2.start();
}
}
class Var04Test implements Runnable {
private static Integer count ;
public Var04Test (){
count = 0 ;
}
public synchronized static void countAdd() {
System.out.println(Thread.currentThread().getName()+";count="+(count++));
}
@Override
public void run() {
countAdd() ;
}
}

如果不是使用同步控制,从逻辑和感觉上,输出的结果应该如下:

Thread-0;count=0
Thread-1;count=0

加入同步控制之后,实际测试输出结果:

Thread-0;count=0
Thread-1;count=1

6、注意事项

  • 继承中子类覆盖父类方法,synchronized关键字特性不能继承传递,必须显式声明;

  • 构造方法上不能使用synchronized关键字,构造方法中支持同步代码块;

  • 接口中方法,抽象方法也不支持synchronized关键字 ;

三、Volatile关键字

1、基本描述

Java内存模型中,为了提升性能,线程会在自己的工作内存中拷贝要访问的变量的副本。这样就会出现同一个变量在某个时刻,在一个线程的环境中的值可能与另外一个线程环境中的值,出现不一致的情况。

使用volatile修饰成员变量,不能修饰方法,即标识该线程在访问这个变量时需要从共享内存中获取,对该变量的修改,也需要同步刷新到共享内存中,保证了变量对所有线程的可见性。

2、使用案例

class Var05Test {
private volatile boolean myFlag = true ;
public void setFlag (boolean myFlag){
this.myFlag = myFlag ;
}
public void method() {
while (myFlag){
try {
System.out.println(Thread.currentThread().getName()+myFlag);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

3、注意事项

  • 可见性只能确保每次读取的是最新的值,但不支持变量操作的原子性;

  • volatile并不会阻塞线程方法,但是同步控制会阻塞;

  • Java同步控制的根本:保证并发下资源的原子性和可见性;

四、源代码地址

GitHub·地址
https://github.com/cicadasmile/java-base-parent
GitEE·地址
https://gitee.com/cicadasmile/java-base-parent

Java 并发编程:多线程并发访问,同步控制


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux内核完全剖析

Linux内核完全剖析

赵炯 / 机械工业出版社 / 2008.10 / 99.00元

本书对早期Linux内核(v0.12)全部代码文件进行了详细、全面的注释和说明,旨在帮助读者用较短的时间对Linux的工作机理获得全面而深刻的理解,为进一步学习和研究Linux打下坚实的基础。虽然选择的版本较低,但该内核已能够正常编译运行,并且其中已包括了Linux工作原理的精髓。书中首先以Linux源代码版本的变迁为主线,介绍了Linux的历史,同时着重说明了各个内核版本的主要区别和改进,给出了......一起来看看 《Linux内核完全剖析》 这本书的介绍吧!

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具