An Offbeat Approach to Brain Tumor Classification using Computer Vision

栏目: IT技术 · 发布时间: 4年前

An Offbeat Approach to Brain Tumor Classification using Computer Vision

An Offbeat Approach to Brain Tumor Classification using Computer Vision

Computer Vision plays a very crucial role in the field of Medical Science and this study of Applied Computer Vision in Medical Science is broadly known as Medical Imaging . Now, Computer Vision is achieved either by deploying Machine Learning or Deep Learning methodologies or both (hybrid) into production.

In this article, I am going to throw light on one such Machine Learning Methodology that uses a Deep Learning Block making it a Hybrid Model for Brain Tumor Classification.

Hybrid Model Development for Brain Tumor Classification

  • The Dataset : Brain MRI Images Dataset available in Kaggle, is used for Model Development ( download ). The dataset contains 253 MRI Images of the Brain. Sample images are shown below.
Tumorous (Left) & Non-Tumorous (Right)
  • 3-Layered-Feed-forward-Convolutional Neural Network for Image Feature Extraction : The proposed CNN Architecture is shown below:

This CNN Architecture is forward passed only once ( no backpropagation ) for Feature Extraction. This is the Deep Learning Block as discussed above.

  • Support Vector Machine (SVM)-RBF Kernel : SVM’s RBF Kernel is instantiated and trained for Predictive Model Development. The ML Block is developed using Scikit-Learn.

Implementation of the Hybrid CNN-SVM Model

The CNN Model is developed using Keras Framework:

# Importing all necessary libraries
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# CNN Model Development
classifier = Sequential()
# CONVOLUTION (1st Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3),input_shape=(1000,1000,3),activation='relu'))
# Max-Pooling for 1st Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# CONVOLUTION (2nd Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3), activation = 'relu'))
# Max-Pooling for 2nd Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# CONVOLUTION (3rd Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3), activation = 'relu'))
# Max-Pooling for 3rd Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# FLATTENING
classifier.add(Flatten())

Delving Deep into the CNN Model instantiated:

classifier.summary()
Model Summary showing that a total of 512 Image Features will be extracted

Loading the CNN Model with pre-saved weights obtained via raw experimentation of the whole methodology (yet to discuss the remaining steps). The weights are available in a Hierarchical Data Format (H5) File in the link mentioned below:

classifier.load_weights("Brain_Tumor_PCA.h5")

Image Feature Extraction using the Instantiated CNN Model

# Importing the necessary libraries
import numpy as np
import cv2
import os
# initializing the feature matrix
X = np.ones((253, 512))
# image loading and feature extraction
i = 0
os.chdir('.../MRI_IMAGES/train/yes')
for filename in os.listdir('.../MRI_IMAGES/train/yes'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/train/no')
for filename in os.listdir('.../MRI_IMAGES/train/no'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/test/yes')
for filename in os.listdir('.../MRI_IMAGES/test/yes'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/test/no')
for filename in os.listdir('.../MRI_IMAGES/test/no'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
# Preparing the Actual Labels
y = np.concatenate((np.ones(121), np.zeros(79), np.ones(34), np.zeros(19)))

Dimensionality Reduction using Principal Component Analysis

# Importing necessary libraries
from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
pca.fit(X.T)
Z = pca.components_.T

Scatter Plot Visualization of the Dataset

# Importing the necessary libraries
import matplotlib.pyplot as plt
plt.scatter(Z.T[0], Z.T[1], c = y, s = 10, marker = 'x')
plt.title('Scatter Plot Visualization (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel("F1_PCA")
plt.ylabel("F2_PCA")
Scatter Plot

So, from the Scatter Plot, it is evident that no ML Algorithm that linearly separates the original feature space, are applicable here.

Spliting the Dataset into Training and Test Set

# Importing necessary libraries
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(Z,y, test_size=0.1, random_state=1234)

SVM (RBF Kernel) Predictive Model Development and Grid-Search Tuning for selection of best hyper-parameter i.e., C (penalty parameter in SVMs)

# Importing necessary libraries
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
# MODEL INSTANTIATION
model = SVC(kernel = 'rbf')
parameters = {'C':[0.1,1,10,100,1000,10000,100000]}
grid_search = GridSearchCV(param_grid = parameters, estimator = model, verbose = 3)
# MODEL TRAINING AND GRID-SEARCH TUNING
grid_search = grid_search.fit(X_train,y_train)

Getting the best Hyper-parameter i.e., C, the penalty parameter

print(grid_search.best_params_)

And, the ‘gamma’ parameter of SVM (RBF Kernel) is set to (1/number_of_features) as default value in Scikit-Learn. So, gamma = 0.5

Model Performance Analysis

print("Validation Accuracy:",grid_search.score(X_test,y_test))
print("Training Accuracy: ",grid_search.score(X_train, y_train))
Training Accuracy: 76.21% and Validation Accuracy: 76.92% (PERFECT FIT)
# Importing the necessary library
from sklearn.metrics import classification_report
print(classification_report(y_test,grid_search.predict(X_test)))
Classification Report
# Importing the necessary libraries
import matplotlib.pyplot as plt
%matplotlib inline
import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.figure()
plot_confusion_matrix(confusion_matrix(y_test, grid_search.predict(X_test)), classes=[0,1], normalize=True,
title='Confusion Matrix')
Normalized Confusion Matrix
# Importing the necessary modules
from sklearn.metrics import roc_curve, auc
y_roc = np.array(y_test)
fpr, tpr, thresholds = roc_curve(y_roc, grid_search.decision_function(X_test))
roc_auc = auc(fpr, tpr)
print("Area under the ROC curve : %f" % roc_auc)
Area Under the Receiver Operator Characteristic curve (AUROC)
# Importing the necessary libraries
import pylab as pl
pl.clf()
pl.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
pl.plot([0, 1], [0, 1], 'k--')
pl.xlim([0.0, 1.0])
pl.ylim([0.0, 1.0])
pl.xlabel('False Positive Rate')
pl.ylabel('True Positive Rate')
pl.legend(loc="lower right")
pl.show()
AUROC Curve

Logic Justification by Decision Boundary

Logic Justification is very essential for any AI Model, be it based on Machine Learning or Deep Learning and this methodology is no exception. In Deep Learning Models involved in Medical Imaging, Logic Justification is done using Grad Cam Visualizations, which is later verified by doctors. Hence pure Deep Learning Models enjoy an upper-hand.

Here, the methodology is based on Support Vector Machine, which is a Pattern Recognition based Machine Learning Algorithm using N-Dimensional Feature Space Geometry. So, Decision Boundary Visualization is the best way of Logic Justification for the whole methodology.

x_min, x_max = X_train[:, 0].min(), X_train[:, 0].max()
y_min, y_max = X_train[:, 1].min(), X_train[:, 1].max()
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.001),
 np.arange(y_min, y_max, 0.001))h = grid_search.predict(np.c_[xx.ravel(), yy.ravel()])
h = h.reshape(xx.shape)
plt.contourf(xx, yy, h)
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, s = 10, marker = 'o', edgecolor = 'k')
plt.title('Scatter Plot Visualization of Training Set (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel('F1_PCA')
plt.ylabel('F2_PCA')
x_min, x_max = X_test[:, 0].min(), X_test[:, 0].max()
y_min, y_max = X_test[:, 1].min(), X_test[:, 1].max()
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.001),
 np.arange(y_min, y_max, 0.001))h = grid_search.predict(np.c_[xx.ravel(), yy.ravel()])
h = h.reshape(xx.shape)
plt.contourf(xx, yy, h)
plt.scatter(X_test[:, 0], X_test[:, 1], c = y_test, s = 10, marker = 'o', edgecolor = 'k')
plt.title('Scatter Plot Visualization of Test Set (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel('F1_PCA')
plt.ylabel('F2_PCA')

以上所述就是小编给大家介绍的《An Offbeat Approach to Brain Tumor Classification using Computer Vision》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

分布式机器学习:算法、理论与实践

分布式机器学习:算法、理论与实践

刘铁岩、陈薇、王太峰、高飞 / 机械工业出版社 / 2018-10-20 / 89.00

人工智能和大数据时代,解决最有挑战性问题的主流方案是分布式机器学习!本书旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向。 由微软亚洲研究院机器学习核心团队潜心力作!鄂维南院士、周志华教授倾心撰写推荐序! 本书旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向。 全书共12章。第1章是绪论,向大家展......一起来看看 《分布式机器学习:算法、理论与实践》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具