内容简介:以爱与青春为名,陪你一路成长
点下方“ 深度学习与先进智能 决策 ”进 号内搜
以爱与青春为名,陪你一路成长
大多数时候,人们使用不同的深度学习框架和标准开发 工具 箱。(SDKs),用于实施深度学习方法,具体如下:
框架
-
Tensorflow: https://www.tensorflow.org/
-
Caffe: http://caffe.berkeleyvision.org/
-
KERAS: https://keras.io/
-
Theano: http://deeplearning.net/software/theano/
-
Torch: http://torch.ch/
-
PyTorch: http://pytorch.org/
-
Lasagne: https://lasagne.readthedocs.io/en/latest/
-
DL4J (DeepLearning4J): https://deeplearning4j.org/
-
Chainer: http://chainer.org/
-
DIGITS: https://developer.nvidia.com/digits
-
CNTK (Microsoft):https://github.com/Microsoft/CNTK
-
MatConvNet: http://www.vlfeat.org/matconvnet/
-
MINERVA: https://github.com/dmlc/minerva
-
MXNET: https://github.com/dmlc/mxnet
-
OpenDeep: http://www.opendeep.org/
-
PuRine: https://github.com/purine/purine2
-
PyLerarn2: http://deeplearning.net/software/pylearn2/
-
TensorLayer: https://github.com/zsdonghao/tensorlayer
-
LBANN: https://github.com/LLNL/lbann
SDKs
-
cuDNN: https://developer.nvidia.com/cudnn
-
TensorRT: https://developer.nvidia.com/tensorrt
-
DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk
-
cuBLAS: https://developer.nvidia.com/cublas
-
cuSPARSE: http://docs.nvidia.com/cuda/cusparse/
-
NCCL: https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
基准数据集
以下是常用于评估不同应用领域的深度学习方法的基准数据集列表。
图像分类或检测或分割
-
MNIST: http://yann.lecun.com/exdb/mnist/
-
CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html
-
SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/
-
CalTech 101/256: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
-
STL-10: https://cs.stanford.edu/~acoates/stl10/
-
NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
-
SUN-dataset: http://groups.csail.mit.edu/vision/SUN/
-
ImageNet: http://www.image-net.org/
-
National Data Science Bowl Competition: http://www.datasciencebowl.com/
-
COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
-
MS COCO DATASET: http://mscoco.org/
-
MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html
-
Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200- 2011.html
-
Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
-
H3D Human Attributes dataset: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
-
Face recognition dataset: http://vis-www.cs.umass.edu/lfw/
-
For more data-set visit: https://www.kaggle.com/
-
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
-
Recently Introduced Datasets in Sept. 2016:
-
Google Open Images (~9M images)—https://github.com/openimages/dataset
-
Youtube-8M (8M videos: https://research.google.com/youtube8m/
文本分类
-
Reuters-21578 Text Categorization Collection: http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
-
Sentiment analysis from Stanford: http://ai.stanford.edu/~amaas/data/sentiment/
-
Movie sentiment analysis from Cornel: http://www.cs.cornell.edu/people/pabo/movie-review-data/ Free eBooks : https://www.gutenberg.org/
-
Brown and stanford corpus on present americal english: https://en.wikipedia.org/wiki/Brown_Corpus
-
Google 1Billion word corpus: https://github.com/ciprian-chelba/1-billion-wordlanguage- modeling-benchmark
图像编码
-
Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
-
Common Objects in Context (COCO):http://cocodataset.org/#overview;http://sidgan.me/technical/2016/01/09/Exploring-Datasets
机器翻译
- Pairs of sentences in English and French : https://www.isi.edu/naturallanguage/ download/hansard/
-
European Parliament Proceedings parallel Corpus 196-2011: http://www.statmt.org/europarl/
-
The statistics for machine translation: http://www.statmt.org/
问答
-
Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuADexplorer/
-
Dataset from DeepMind: https://github.com/deepmind/rc-data
-
Amazon dataset:http://jmcauley.ucsd.edu/data/amazon/qa/,;http://trec.nist.gov/data/qamain...,;http://www.ark.cs.cmu.edu/QA-data/,;http://webscope.sandbox.yahoo.co...,;http://blog.stackoverflow.com/20..
语音辨识
-
TIMIT: https://catalog.ldc.upenn.edu/LDC93S1
-
Voxforge: http://voxforge.org/
-
Open Speech and Language Resources: http://www.openslr.org/12/
文章摘要
-
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
-
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
-
https://catalog.ldc.upenn.edu/LDC2002T31
情感分析
-
IMDB dataset: http://www.imdb.com/
高光谱图像分析
-
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
-
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
-
http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html
期刊和会议
Conferences
-
Neural Information Processing System (NIPS)
-
International Conference on Learning Representation (ICLR): What are you doing for Deep Learning?
-
International Conference on Machine Learning (ICML)
-
Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep Learning?
-
International Conference on Computer Vision (ICCV)
-
European Conference on Computer Vision (ECCV)
-
British Machine Vision Conference (BMVC)
Journal
-
Journal of Machine Learning Research (JMLR)
-
IEEE Transaction of Neural Network and Learning System (
-
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
-
Computer Vision and Image Understanding (CVIU)
-
Pattern Recognition Letter
-
Neural Computing and Application
-
International Journal of Computer Vision
-
IEEE Transactions on Image Processing
-
IEEE Computational Intelligence Magazine
-
Proceedings of IEEE
-
IEEE Signal Processing Magazine
-
Neural Processing Letter
-
Pattern Recognition
-
Neural Networks
-
ISPPRS Journal of Photogrammetry and Remote Sensing
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- [译] 精心整理,机器学习的 3 大学习资源
- OpenGL ES 学习资源分享
- ApacheCN 学习资源汇总 2019.3
- 吐血推荐,B 站最强学习资源汇总(数据科学、机器学习、Python)
- 手把手教你在试验中修正机器学习模型(附学习资源)
- egret游戏入门之学习资源篇
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Building Social Web Applications
Gavin Bell / O'Reilly Media / 2009-10-1 / USD 34.99
Building a social web application that attracts and retains regular visitors, and gets them to interact, isn't easy to do. This book walks you through the tough questions you'll face if you're to crea......一起来看看 《Building Social Web Applications》 这本书的介绍吧!
图片转BASE64编码
在线图片转Base64编码工具
UNIX 时间戳转换
UNIX 时间戳转换