Handtrack.js — let the flames dancing in your hands

栏目: IT技术 · 发布时间: 5年前

内容简介:First of all, simply include the scriptOr you can install it via npm for use in a TypeScript / ES6 projectTo stream your webcam into the browser, I utilize the npm JavaScript module

Implementation

# Step 1 : Include handtrack.js

First of all, simply include the script handtrack.js in the <head> section of the html file.

<script src="https://cdn.jsdelivr.net/npm/handtrackjs/dist/handtrack.min.js"> </script>

Or you can install it via npm for use in a TypeScript / ES6 project

npm install --save handtrackjs

# Step 2 : Stream webcam to browser

To stream your webcam into the browser, I utilize the npm JavaScript module webcam-easy.js , which provides an easy to use module that can access webcam and take a photo. To find out more details about that, please refer to my previous blog :

# Step 3 : Load HandTrack Model

In order to perform hand tracking, we first need to load the pre-trained HandTrack model, by calling the API of handTrack.load(modelParams) . HandTrack comes with a few optional parameters of the model:

  • flipHorizontal — default value: True

flip e.g for video

  • imageScaleFactor — default value: 0.7

reduce input image size for gains in speed

  • maxNumBoxes — default value: 20

maximum number of boxes to detect

  • iouThreshold — default value: 0.5

ioU threshold for non-max suppression

  • scoreThreshold — default value: 0.99

confidence threshold for predictions

const modelParams = {
 flipHorizontal: true, 
 maxNumBoxes: 20, 
 iouThreshold: 0.5,
 scoreThreshold: 0.8
}handTrack.load(modelParams).then(mdl => { 
 model = mdl;
 console.log("model loaded");
});

# Step 4 : Hand detection

Next, we start to feed the webcam stream through the HandTrack model to perform hand detection, by calling the API of model.detect(video) . It takes an input image element (can be an img , video , canvas tag) and returns an array of bounding boxes with class name and confidence level.

model.detect(webcamElement).then(predictions => {
 console.log("Predictions: ", predictions);
 showFire(predictions);
});

Return of predictions would look like:

[{
 bbox: [x, y, width, height],
 class: "hand",
 score: 0.8380282521247864
}, {
 bbox: [x, y, width, height],
 class: "hand",
 score: 0.74644153267145157
}]

# Step 5 : Show magic fire

In the above function, we get the bounding box of the hand position, now we can use it to show the fire GIF image in your hand.

HTML

Overlay the canvas layer on top of the webcam element

<video id="webcam" autoplay playsinline width="640" height="480"></video><div id="canvas" width="640" height="480"></div>

JavaScript

Set the size and position of the fireElement , and append it to the canvas layer.

function showFire(predictions){
if(handCount != predictions.length){
$("#canvas").empty();
fireElements = [];
}
handCount = predictions.length;

for (let i = 0; i < predictions.length; i++) {
if (fireElements.length > i) {
fireElement = fireElements[i];
}else{
fireElement = $("<div class='fire_in_hand'></div>");
fireElements.push(fireElement);
fireElement.appendTo($("#canvas"));

}
var fireSizeWidth = fireElement.css("width").replace("px","");
var fireSizeHeight = fireElement.css("height").replace("px","");
var firePositionTop = hand_center_point[0]- fireSizeHeight;
var firePositionLeft = hand_center_point[1] - fireSizeWidth/2;
fireElement.css({top: firePositionTop, left: firePositionLeft, position:'absolute'});
}
}

CSS

set the background-image to be the fire.gif image

.fire_in_hand {
 width: 300px;
 height: 300px;
 background-image: url(../images/fire.gif);
 background-position: center center;
 background-repeat: no-repeat;
 background-size: cover;
}

That’s pretty much for the code! Now you should be good to start showing the magic fire in your hands!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

现代编译原理

现代编译原理

Andrew W.Appel、Maia Ginsburg / 人民邮电 / 2005-9 / 59.00元

《现代编译原理:C语言描述(英文版)(本科)》全面讲述了现代编译器的各个组成部分,包括:词法分析、语法分析、抽象语法、语义检查、中间代码表示、指令选择、数据流分析、寄存器分配以及运行时系统等。与大多数编译原理的教材不同,《现代编译原理:C语言描述(英文版)(本科)》采用了函数语言和面向对象语言来描述代码生成和寄存器分配,对于编译器中各个模块之间的接口都给出了实际的 C 语言头文件。 全书分成两部分......一起来看看 《现代编译原理》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具