Train an Image Classifier using Keras.

栏目: IT技术 · 发布时间: 5年前

内容简介:I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are comm

I have used sequential API to stack multiple layers of convolution, max-pooling layers with a flatten as well as some dense layers.

I strongly recommend you to first build your basics of the working of CNN and get used to all the terminologies that are common in CNNs.

Let’s look at the architecture in detail.

The first layer is a Convolutional Layer that will take an image as an input of size (300 * 300* 3). Then using the activation argument we can apply different activation functions like ‘relu’, ‘tanh’, ‘sigmoid’, ‘softmax’ e.t.c, here I have applied ‘relu’ activation function.

Let’s talk about the number and size of the filters in the first layer we have used.

Through a Kernel size parameter, we could set the size of the filter as we have set it as (5*5), and using filters parameter we could set the number of filters we want to use and in our architecture, it is set to 32.

Now the second layer is a Maxpooling layer that can be applied simply by calling the MaxPooling2D function.

Similarly the third and the fourth layers are the Convolutional and the Maxpooling layers respectively.

Now we’ll flatten out the feature map using flatten function so that we could use those extracted features as an input to the Multi-Layer Perceptron for the classification.

After flattening out the feature map I have used 3 hidden layers that have 128, 64, and 32 number of neurons respectively.

You could build these hidden layers easily with the help of the Dense() method, also you could pass the activation function that you want to apply.

In the end, the last layer also called an Output layer has 2 neurons that give out the likelihood of two classes.

Check that I have used the Softmax activation function in the last layer as it converts the final information in the probability distribution for multiple classes.

Now let’s see the summary of our model using a summary() method.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

微商思维

微商思维

龚文祥、罗剑锋、触电会 / 金城出版社 / 2018-7 / 88.00元

微商不仅仅是一种继传统实体、电商之后的革命性新兴商业形态,更是一种能够写入中国商业史的思潮。龚文祥新著《微商思维》,从道的层面对广大微商人的商业实践智慧进行了高度浓缩与抽象总结,站在更高的视角解读微商背后的商业逻辑与本质。 本书前半部分,主要从本质、品牌、营销等几个方面,阐述了微商思维的内涵及应用场景,帮助读者了解并认识这种革命性的商业思维。 后半部分主要是触电会社群内部各位大咖的实操......一起来看看 《微商思维》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

随机密码生成器
随机密码生成器

多种字符组合密码