Grassmann.jl A\b 3x faster than Julia's StaticArrays.jl

栏目: IT技术 · 发布时间: 4年前

内容简介:In this algebra, it’s possible to compute on a mesh of arbitrary 5 dimensionalAdditionally, inProgramming the

In this algebra, it’s possible to compute on a mesh of arbitrary 5 dimensional conformal geometric algebra simplices, which can be represented by a bundle of nested dyadic tensors.

julia> using Grassmann, StaticArrays; basis"+-+++"
(⟨+-+++⟩, v, v₁, v₂, v₃, v₄, v₅, v₁₂, v₁₃, v₁₄, v₁₅, v₂₃, v₂₄, v₂₅, v₃₄, v₃₅, v₄₅, v₁₂₃, v₁₂₄, v₁₂₅, v₁₃₄, v₁₃₅, v₁₄₅, v₂₃₄, v₂₃₅, v₂₄₅, v₃₄₅, v₁₂₃₄, v₁₂₃₅, v₁₂₄₅, v₁₃₄₅, v₂₃₄₅, v₁₂₃₄₅)

julia> value(rand(Chain{V,1,Chain{V,1}}))
5-element StaticArrays.SArray{Tuple{5},Chain{⟨+-+++⟩,1,  ,253} where 253 where   ,1,5} with indices SOneTo(5):
   -0.33459594357756073v₁ - 0.3920064467082769v₂ - 0.575474920388841v₃ + 0.6150287650825268v₄ - 0.7568209093000915v₅
  -0.7402635950699139v₁ - 0.9303076362461833v₂ + 0.9729806462365271v₃ - 0.8514563480551867v₄ + 0.09906887873006287v₅
  -0.7456570397821101v₁ - 0.6497560949330929v₂ + 0.4756585550844967v₃ - 0.31169948016530347v₄ - 0.9355928499340793v₅
   -0.4555014543082292v₁ + 0.712268225360094v₂ - 0.7500443783398549v₃ - 0.36349628003234713v₄ + 0.5005769037801056v₅
 -0.07402971220645727v₁ + 0.19911765119918146v₂ - 0.4980618129231722v₃ - 0.7728564279829087v₄ + 0.9165735719353756v₅

julia> A = Chain{V,1}(rand(SMatrix{5,5}))
(0.9244801277294266v₁ + 0.029444337884018346v₂ + 0.745495522394158v₃ + 0.6695874677964055v₄ + 0.4998003712198389v₅)v₁ + (0.5423877012973404v₁ + 0.30112324458605655v₂ + 0.9530587650033631v₃ + 0.2706004745612134v₄ + 0.37762612797501616v₅)v₂ + (0.7730171467954035v₁ + 0.019660709510785912v₂ + 0.39119534821037494v₃ + 0.9403026278575068v₄ + 0.07545094732793833v₅)v₃ + (0.7184128110093908v₁ + 0.6295740775044767v₂ + 0.5179035493253021v₃ + 0.039081667453648716v₄ + 0.3719284661613145v₅)v₄ + (0.5033657705978616v₁ + 0.41183905359914386v₂ + 0.7761548051732969v₃ + 0.07635587137916744v₄ + 0.5582934197259402v₅)v₅

Additionally, in Grassmann.jl we prefer the nested usage of pure ChainBundle parametric types for large re-usable global cell geometries, from which local dyadics can be selected.

Programming the A\b method is straight forward with some Julia language metaprogramming and Grassmann.jl by first instantiating some Cramer symbols

Base.@pure function Grassmann.Cramer(N::Int)
    x,y = SVector{N}([Symbol(:x,i) for i ∈ 1:N]),SVector{N}([Symbol(:y,i) for i ∈ 1:N])
    xy = [:(($(x[1+i]),$(y[1+i])) = ($(x[i])∧t[$(1+i)],t[end-$i]∧$(y[i]))) for i ∈ 1:N-1]
    return x,y,xy
end

These are exterior product variants of the Cramer determinant symbols ( N! times N -simplex hypervolumes), which can be combined to directly solve a linear system:

@generated function Base.:\(t::Chain{V,1,<:Chain{V,1}},v::Chain{V,1}) where V
    N = ndims(V)-1 # paste this into the REPL for faster eval
    x,y,xy = Grassmann.Cramer(N)
    mid = [:($(x[i])∧v∧$(y[end-i])) for i ∈ 1:N-1]
    out = Expr(:call,:SVector,:(v∧$(y[end])),mid...,:($(x[end])∧v))
    return Expr(:block,:((x1,y1)=(t[1],t[end])),xy...,
        :(Chain{V,1}(getindex.($(Expr(:call,:./,out,:(t[1]∧$(y[end])))),1))))
end

Which results in the following highly efficient @generated code for solving the linear system,

(x1, y1) = (t[1], t[end])
(x2, y2) = (x1 ∧ t[2], t[end - 1] ∧ y1)
(x3, y3) = (x2 ∧ t[3], t[end - 2] ∧ y2)
(x4, y4) = (x3 ∧ t[4], t[end - 3] ∧ y3)
Chain{V, 1}(getindex.(SVector(v ∧ y4, (x1 ∧ v) ∧ y3, (x2 ∧ v) ∧ y2, (x3 ∧ v) ∧ y1, x4 ∧ v) ./ (t[1] ∧ y4), 1))

Benchmarks with that algebra indicate a 3x faster performance than SMatrix for applying A\b to bundles of dyadic elements.

julia> @btime $(rand(SMatrix{5,5},10000)).\Ref($(SVector(1,2,3,4,5)));
  2.588 ms (29496 allocations: 1.44 MiB)

julia> @btime $(Chain{V,1}.(rand(SMatrix{5,5},10000))).\$(v1+2v2+3v3+4v4+5v5);
  808.631 μs (2 allocations: 390.70 KiB)

julia> @btime $(SMatrix(A))\$(SVector(1,2,3,4,5))
  150.663 ns (0 allocations: 0 bytes)
5-element SArray{Tuple{5},Float64,1,5} with indices SOneTo(5):
 -4.783720495603508
  6.034887114999602
  1.017847212237964
  6.379374861538397
 -4.158116538111051

julia> @btime $A\$(v1+2v2+3v3+4v4+5v5)
  72.405 ns (0 allocations: 0 bytes)
-4.783720495603519v₁ + 6.034887114999605v₂ + 1.017847212237964v₃ + 6.379374861538393v₄ - 4.1581165381110505v₅

Such a solution is not only more efficient than Julia’s StaticArrays.jl method for SMatrix , but is also useful to minimize allocations in Grassmann.jl finite element assembly.

Similarly, the Cramer symbols can also be manipulated to invert the linear system or for determining whether a point is within a simplex.

julia> using Grassmann; basis"3"
(⟨+++⟩, v, v₁, v₂, v₃, v₁₂, v₁₃, v₂₃, v₁₂₃)

julia> T = Chain{V,1}(Chain(v1),v1+v2,v1+v3)
(1v₁ + 0v₂ + 0v₃)v₁ + (1v₁ + 1v₂ + 0v₃)v₂ + (1v₁ + 0v₂ + 1v₃)v₃

julia> barycenter(T) ∈ T, (v1+v2+v3) ∈ T
(true, false)

There are multiple equivalent ways of computing the same results using the and : dyadic products.

julia> T\barycenter(T) == inv(T)⋅barycenter(T)
true

julia> sqrt(T:T) == norm(SMatrix(T))
true

The following Makie.jl streamplot was generated with the Grassmann.Cramer method and interpolated from Nedelec edges of a Maxwell finite element solution.

More info about these examples is at https://grassmann.crucialflow.com/dev/tutorials/dyadic-tensors

Hermann Grassmann was the inventor of linear algebra as we know it today.


以上所述就是小编给大家介绍的《Grassmann.jl A\b 3x faster than Julia's StaticArrays.jl》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

修改代码的艺术

修改代码的艺术

Michael Feathers / 刘未鹏 / 人民邮电出版社 / 2007-09-25 / 59.00元

我们都知道,即使是最训练有素的开发团队,也不能保证始终编写出清晰高效的代码。如果不积极地修改、挽救,随着时间流逝,所有软件都会不可避免地渐渐变得复杂、难以理解,最终腐化、变质。因此,理解并修改已经编写好的代码,是每一位程序员每天都要面对的工作,也是开发程序新特性的基础。然而,与开发新代码相比,修改代码更加令人生畏,而且长期以来缺乏文献和资料可供参考。 本书是继《重构》和《重构与模式》之后探讨......一起来看看 《修改代码的艺术》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具