Accessing Data
There’s a tremendous amount of information available, just for a simple 3-step pipeline that runs locally. This pipeline can run in the cloud on a Dataflow
runner, for example, with minimum changes in configuration.
In this scenario, it’s much easier to use data that’s stored in the database, instead of browsing cloud storage buckets and VMs on a server farm.
From this point on, you can connect to a ML Metadata store either from a direct SQL connection, or by gRPC (via stub or plain old calls). Then, it’s a matter of selecting the kinds of data you want to inspect manually. This could be the schema or the statistics protobuf, for example.
Typically, you only need to access the resource identifiers of the resources. You should be able to access them via only the URI if you’re in the same environment (ex. a notebook inside a GCP Project VM).
Example Use Case
Assume that you’ve got a pipeline running in some interval (or event-based triggering) and, sometimes, you want to view the data statistics of the latest pipeline run in comparison to the previous run.
-
You need the StatisticsGen/statistics
artifacts of 2 different pipeline runs (these are the ExampleStatistics
type, with
type_id
8). These can be found on theArtifact
table. -
You also need access to the artifact from the correct pipeline runs. The
Attribution
table associatescontext_id
withartifact_id
. The only thing missing is to pinpoint the 2context_id
s you need in order to make a simple select query. -
The
Context
table also contains timestamp information. For example, the rowPipeline .2020–07–14T23:45:00.508181.StatisticsGen
has got acontext_id
5.
Context Id 5, corresponds to Artifact Id 3 from the Attribution table. Artifact Id 3 is indeed the Statistics artifact we need.
Fortunately, kubeflow pipelines already do this visualisation automatically
Related Articles
Useful Machine Learning Sessions from the H2O World New York
14. November 2019
AI and Privacy: What’s in store for the the future?
19. April 2020
Request for deletion
About
MC.AI – Aggregated news about artificial intelligence
MC.AI collects interesting articles and news about artificial intelligence and related areas. The contributions come from various open sources and are presented here in a collected form.
The copyrights are held by the original authors, the source is indicated with each contribution.
Contributions which should be deleted from this platform can be reported using the appropriate form (within the contribution).
MC.AI is open for direct submissions, we look forward to your contribution!
Search on MC.AI
mc.ai aggregates articles from different sources - copyright remains at original authors
以上所述就是小编给大家介绍的《A comprehensive ML Metadata walkthrough for Tensorflow Extended》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
垃圾回收算法手册:自动内存管理的艺术
Richard Jones、Eliot Moss、Antony Hosking / 王雅光、薛迪 / 机械工业出版社 / 2016-3 / 139
在自动内存管理领域,Richard Jones于1996年出版的《Garbage Collection:Algorithms for Automatic Dynamic Memory Management》可谓是一部里程碑式的作品。接近20年过去了,垃圾回收技术得到了非常大的发展,因此有必要将该领域当前最先进的技术呈现给读者。本书汇集了自动内存管理研究者和开发者们在过去50年间的丰富经验,在本书中......一起来看看 《垃圾回收算法手册:自动内存管理的艺术》 这本书的介绍吧!
HEX CMYK 转换工具
HEX CMYK 互转工具
HSV CMYK 转换工具
HSV CMYK互换工具