package com.immooc.spark import org.apache.log4j.{Level, Logger} import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.tree.DecisionTree import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.util.MLUtils object DecisionTreeTest { def main(args:Array[String]): Unit = { val conf = new SparkConf().setAppName("DecisionTreeTest").setMaster("local[2]") val sc = new SparkContext(conf) Logger.getRootLogger.setLevel(Level.WARN) // 读取样本数据1,格式为LIBSVM format val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/data.txt") val parsedData = data.map{ line => val parts = line.split(',') LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble))) } //样本数据划分训练样本与测试样本 val splits = parsedData.randomSplit(Array(0.7, 0.3), seed = 11L) val training = splits(0).cache() val test = splits(1) val numClasses = 2 val categoricalFeaturesInfo = Map[Int, Int]() val impurity = "gini" val maxDepth = 5 val maxBins = 32 val model = DecisionTree.trainClassifier(training, numClasses, categoricalFeaturesInfo, impurity, maxDepth, maxBins) //模型预测 val labelAndPreds = test.map { point => val prediction = model.predict(point.features) (point.label, prediction) } //测试值与真实值对比 val print_predict = labelAndPreds.take(15) println("label" + "\t" + "prediction") for (i <- 0 to print_predict.length - 1) { println(print_predict(i)._1 + "\t" + print_predict(i)._2) } //树的错误率 val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / test.count() println("Test Error = " + testErr) //打印树的判断值 println("Learned classification tree model:\n" + model.toDebugString) } }
1. 数据
0,32 1 1 0 0,25 1 2 0 1,29 1 2 1 1,24 1 1 0 0,31 1 1 0 1,35 1 2 1 0,30 0 1 0 0,31 1 1 0 1,30 1 2 1 1,21 1 1 0 0,21 1 2 0 1,21 1 2 1 0,29 0 2 1 0,29 1 0 1 0,29 0 2 1 1,30 1 1 0
2. 结果
label prediction 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 Test Error = 0.4 Learned classification tree model: DecisionTreeModel classifier of depth 5 with 11 nodes If (feature 0 <= 33.5) If (feature 0 <= 30.5) If (feature 1 <= 0.5) Predict: 0.0 Else (feature 1 > 0.5) If (feature 0 <= 27.0) If (feature 2 <= 1.5) Predict: 1.0 Else (feature 2 > 1.5) Predict: 0.0 Else (feature 0 > 27.0) Predict: 1.0 Else (feature 0 > 30.5) Predict: 0.0 Else (feature 0 > 33.5) Predict: 1.04691
以上所述就是小编给大家介绍的《Spark mllib 决策树》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
The Mechanics of Web Handling
David R. Roisum
This unique book covers many aspects of web handling for manufacturing, converting, and printing. The book is applicable to any web including paper, film, foil, nonwovens, and textiles. The Mech......一起来看看 《The Mechanics of Web Handling》 这本书的介绍吧!