HashMap之元素插入

栏目: 数据库 · 发布时间: 5年前

内容简介:微信公众号:I am CR7如有问题或建议,请在下方留言最近更新:2018-09-14

微信公众号:I am CR7

如有问题或建议,请在下方留言

最近更新:2018-09-14

HashMap

作为哈希表的Map接口实现,其具备以下几个特点:

  1. 和HashTable类似,采用数组+单链表形式存储元素,从jdk1.8开始,增加了红黑树的结构,当单链表中元素个数超过指定阈值,会转化为红黑树结构存储,目的就是为了解决单链表元素过多时查询慢的问题。
  2. 和HashTable不同的是,HashMap是线程不安全的,方法都未使用synchronized关键字。因为内部实现不同,允许key和value值为null。
  3. 构建HashMap实例时有两个重要的参数,会影响其性能:初始大小和加载因子。初始大小用来规定哈希表数组的长度,即桶的个数。加载因子用来表示哈希表元素的填满程度,越大则表示允许填满的元素就越多,哈希表的空间利用率就越高,但是冲突的机会也就增加了。反之,越小则冲突的机会就会越少,但是空间很多就浪费了。

静态常量

1、源码:

 1/**
 2 * 默认初始大小,值为16,要求必须为2的幂
 3 */
 4static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 5
 6/**
 7 * 最大容量,必须不大于2^30
 8 */
 9static final int MAXIMUM_CAPACITY = 1 << 30;
10
11/**
12 * 默认加载因子,值为0.75
13 */
14static final float DEFAULT_LOAD_FACTOR = 0.75f;
15
16/**
17 * hash冲突默认采用单链表存储,当单链表节点个数大于8时,会转化为红黑树存储
18 */
19static final int TREEIFY_THRESHOLD = 8;
20
21/**
22 * hash冲突默认采用单链表存储,当单链表节点个数大于8时,会转化为红黑树存储。
23 * 当红黑树中节点少于6时,则转化为单链表存储
24 */
25static final int UNTREEIFY_THRESHOLD = 6;
26
27/**
28 * hash冲突默认采用单链表存储,当单链表节点个数大于8时,会转化为红黑树存储。
29 * 但是有一个前提:要求数组长度大于64,否则不会进行转化
30 */
31static final int MIN_TREEIFY_CAPACITY = 64;
复制代码

注意: HashMap默认采用数组+单链表方式存储元素,当元素出现哈希冲突时,会存储到该位置的单链表中。但是单链表不会一直增加元素,当元素个数超过8个时,会尝试将单链表转化为红黑树存储。但是在转化前,会再判断一次当前数组的长度,只有数组长度大于64才处理。否则,进行扩容操作。此处先提到这,后续会有详细的讲解。

2、问题:

问: 为何加载因子默认为0.75?

答: 通过源码里的javadoc注释看到,元素在哈希表中分布的桶频率服从参数为0.5的泊松分布,具体可以参考下StackOverflow里的解答: stackoverflow.com/questions/1…

构造函数

1、无参构造函数:

1public HashMap() {
2    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
3}
复制代码

2、带参构造函数,指定初始容量:

1public HashMap(int initialCapacity) {
2    this(initialCapacity, DEFAULT_LOAD_FACTOR);
3}
复制代码

3、带参构造函数,指定初始容量和加载因子:

3.1、源码:

 1public HashMap(int initialCapacity, float loadFactor) {
 2    if (initialCapacity < 0)
 3        throw new IllegalArgumentException("Illegal initial capacity: " +
 4                                           initialCapacity);
 5    if (initialCapacity > MAXIMUM_CAPACITY)
 6        initialCapacity = MAXIMUM_CAPACITY;
 7    if (loadFactor <= 0 || Float.isNaN(loadFactor))
 8        throw new IllegalArgumentException("Illegal load factor: " +
 9                                           loadFactor);
10    this.loadFactor = loadFactor;
11    this.threshold = tableSizeFor(initialCapacity)//通过后面扩容的方法知道,该值就是初始创建数组时的长度
12}
13
14//返回大于等于cap最小的2的幂,如cap为12,结果就是16
15static final int tableSizeFor(int cap) {
16    int n = cap - 1;//为了保证当cap本身是2的幂的情况下,能够返回原本的数,否则返回的是cap的2倍
17    n |= n >>> 1;
18    n |= n >>> 2;
19    n |= n >>> 4;
20    n |= n >>> 8;
21    n |= n >>> 16;
22    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
23}
复制代码

3.2、示例:

下面我们以cap等于8为例:

  1. 不减一的过程如下:
    HashMap之元素插入
    图注:tableSizeFor不减一过程
    最后执行加1操作,那么返回的是2^4=16,是cap的2倍。
  2. 减一的过程如下:
    HashMap之元素插入
    图注:tableSizeFor减一过程
    最后执行加1操作,那么返回的是2^3=8,也就是cap本身。

3.3、问题:

问: 为何数组容量必须是2次幂?

答:

索引计算公式为i = (n - 1) & hash,如果n为2次幂,那么n-1的低位就全是1,哈希值进行与操作时可以保证低位的值不变,从而保证分布均匀,效果等同于hash%n,但是位运算比取余运算要高效的多。

4、带参构造函数,指定Map集合:

 1public HashMap(Map<? extends K, ? extends V> m) {
 2    this.loadFactor = DEFAULT_LOAD_FACTOR;
 3    putMapEntries(m, false);
 4}
 5
 6final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 7    int s = m.size();
 8    if (s > 0) {
 9        if (table == null) { // pre-size
10            float ft = ((float)s / loadFactor) + 1.0F;
11            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
12                     (int)ft : MAXIMUM_CAPACITY);
13            if (t > threshold)
14                threshold = tableSizeFor(t);
15        }
16        else if (s > threshold)
17            resize();
18        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
19            K key = e.getKey();
20            V value = e.getValue();
21            putVal(hash(key), key, value, false, evict);
22        }
23    }
24}
复制代码

添加元素

1、源码:

 1public V put(K key, V value) {
 2    return putVal(hash(key), key, value, false, true);
 3}
 4
 5//将key的哈希值,进行高16位和低16位异或操作,增加低16位的随机性,降低哈希冲突的可能性
 6static final int hash(Object key) {
 7    int h;
 8    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 9}
10
11final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
12                   boolean evict) {
13    Node<K,V>[] tab; Node<K,V> p; int n, i;
14    //首次table为null,首先通过resize()进行数组初始化
15    if ((tab = table) == null || (n = tab.length) == 0)
16        n = (tab = resize()).length;
17    //利用index=(n-1)&hash的方式,找到索引位置
18    //如果索引位置无元素,则创建Node对象,存入数组该位置中
19    if ((p = tab[i = (n - 1) & hash]) == null)
20        tab[i] = newNode(hash, key, value, null);
21    else {  //如果索引位置已有元素,说明hash冲突,存入单链表或者红黑树中
22        Node<K,V> e; K k;
23        //hash值和key值都一样,则进行value值的替代
24        if (p.hash == hash &&
25            ((k = p.key) == key || (key != null && key.equals(k))))
26            e = p;
27        else if (p instanceof TreeNode) //hash值一致,key值不一致,且p为红黑树结构,则往红黑树中添加
28            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
29        else { //hash值一致,key值不一致,且p为单链表结构,则往单链表中添加
30            for (int binCount = 0; ; ++binCount) {
31                if ((e = p.next) == null) {
32                    p.next = newNode(hash, key, value, null); //追加到单链表末尾
33                    if (binCount >= TREEIFY_THRESHOLD - 1) // //超过树化阈值则进行树化操作
34                        treeifyBin(tab, hash);
35                    break;
36                }
37                if (e.hash == hash &&
38                    ((k = e.key) == key || (key != null && key.equals(k))))
39                    break;
40                p = e;
41            }
42        }
43        if (e != null) { // existing mapping for key
44            V oldValue = e.value;
45            if (!onlyIfAbsent || oldValue == null)
46                e.value = value;
47            afterNodeAccess(e);
48            return oldValue;
49        }
50    }
51    ++modCount;
52    if (++size > threshold) //当元素个数大于新增阈值,则通过resize()扩容
53        resize();
54    afterNodeInsertion(evict);
55    return null;
56}
复制代码

2、流程图:

HashMap之元素插入
图注:添加元素流程图

3、hash计算:

问: 获取hash值时:为何在hash方法中加上异或无符号右移16位的操作?

答:

此方式是采用"扰乱函数"的解决方案,将key的哈希值,进行高16位和低16位异或操作,增加低16位的随机性,降低哈希冲突的可能性。

下面我们通过一个例子,来看下有无"扰乱函数"的情况下,计算出来索引位置的值:

HashMap之元素插入
图注:hash计算

由上图可知,增加"扰乱函数"之后,原本哈希冲突的情况并没有再出现。

扩容

1、源码:

 1final Node<K,V>[] resize() {
 2    Node<K,V>[] oldTab = table;
 3    int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4    int oldThr = threshold;
 5    int newCap, newThr = 0;
 6    if (oldCap > 0) {//数组不为空
 7        if (oldCap >= MAXIMUM_CAPACITY) { //当前长度超过MAXIMUM_CAPACITY,新增阈值为Integer.MAX_VALUE
 8            threshold = Integer.MAX_VALUE;
 9            return oldTab;
10        }
11        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
12                 oldCap >= DEFAULT_INITIAL_CAPACITY) //进行2倍扩容,如果当前长度超过初始16,新增阈值也做2倍扩容
13            newThr = oldThr << 1; // double threshold
14    }
15    else if (oldThr > 0) // 数组为空,指定了新增阈值
16        newCap = oldThr;
17    else { //数组为空,未指定新增阈值,采用默认初始大小和加载因子,新增阈值为16*0.75=12
18        newCap = DEFAULT_INITIAL_CAPACITY;
19        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
20    }
21    if (newThr == 0) { //按照给定的初始大小计算扩容后的新增阈值
22        float ft = (float)newCap * loadFactor;
23        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
24                  (int)ft : Integer.MAX_VALUE);
25    }
26    threshold = newThr; //扩容后的新增阈值
27    @SuppressWarnings({"rawtypes","unchecked"})
28        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //扩容后的数组
29    table = newTab;
30    if (oldTab != null) {  //将原数组中元素放入扩容后的数组中
31        for (int j = 0; j < oldCap; ++j) {
32            Node<K,V> e;
33            if ((e = oldTab[j]) != null) {
34                oldTab[j] = null;
35                if (e.next == null) //无后继节点,则直接计算在新数组中位置,放入即可
36                    newTab[e.hash & (newCap - 1)] = e;
37                else if (e instanceof TreeNode) //为树节点需要拆分
38                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
39                else { //有后继节点,且为单链表,将原数组中单链表元素进行拆分,一部分在原索引位置,一部分在原索引+原数组长度
40                    Node<K,V> loHead = null, loTail = null; //保存在原索引的链表
41                    Node<K,V> hiHead = null, hiTail = null; //保存在新索引的链表
42                    Node<K,V> next;
43                    do {
44                        next = e.next;
45                        if ((e.hash & oldCap) == 0) { //哈希值和原数组长度进行&操作,为0则在原数组的索引位置,非0则在原数组索引位置+原数组长度的新位置
46                            if (loTail == null)
47                                loHead = e;
48                            else
49                                loTail.next = e;
50                            loTail = e;
51                        }
52                        else {
53                            if (hiTail == null)
54                                hiHead = e;
55                            else
56                                hiTail.next = e;
57                            hiTail = e;
58                        }
59                    } while ((e = next) != null);
60                    if (loTail != null) {
61                        loTail.next = null;
62                        newTab[j] = loHead;
63                    }
64                    if (hiTail != null) {
65                        hiTail.next = null;
66                        newTab[j + oldCap] = hiHead;
67                    }
68                }
69            }
70        }
71    }
72    return newTab;
73}
复制代码

2、流程图:

2.1 首次调用扩容方法:

HashMap之元素插入
图注:首次调用扩容方法

2.2 示例:

情况一:

  1. 使用无参构造函数:
1HashMap<String, Integer> hashMap = new HashMap<>();
复制代码
  1. put元素,发现table为null,调用resize扩容方法:
1int oldCap = (oldTab == null) ? 0 : oldTab.length;
2int oldThr = threshold;
复制代码
  1. oldCap为0,oldThr为0,执行resize()里的该分支:
1newCap = DEFAULT_INITIAL_CAPACITY;
2newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
3threshold = newThr;
4@SuppressWarnings({"rawtypes","unchecked"})
5    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
6table = newTab;
复制代码
  1. newCap为16,newThr为12,也就是说HashMap默认数组长度为16,元素添加阈值为12。
  2. threshold为12。创建大小为16的数组,赋值给table。

情况二:

  1. 使用有参构造函数:
1HashMap<String, Integer> hashMap = new HashMap<>(7);
复制代码
  1. oldCap为0,oldThr为8,执行resize()里的该分支:
1else if (oldThr > 0) // initial capacity was placed in threshold
2    newCap = oldThr;
复制代码
  1. newCap为8,newThr为0,执行resize()里的该分支:
1if (newThr == 0) {
2    float ft = (float)newCap * loadFactor;
3    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
4              (int)ft : Integer.MAX_VALUE);
5}
6threshold = newThr;
7@SuppressWarnings({"rawtypes","unchecked"})
8    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
9table = newTab;
复制代码
  1. threshold为6。创建大小为8的数组,赋值给table。

2.3 非首次调用扩容方法:

HashMap之元素插入
图注:非首次调用扩容方法

2.4 示例:

接着2.2里的情况二,继续添加元素,直到扩容:

  1. oldCap为8,oldThr为6,执行resize()里的该分支:
1if (oldCap > 0) {
2    if (oldCap >= MAXIMUM_CAPACITY) {
3        threshold = Integer.MAX_VALUE;
4        return oldTab;
5    }
6    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
7             oldCap >= DEFAULT_INITIAL_CAPACITY)
8        newThr = oldThr << 1; // double threshold
9}
复制代码
  1. oldCap小于MAXIMUM_CAPACITY,进行2倍扩容,newCap为16。oldCap小于DEFAULT_INITIAL_CAPACITY,不做newThr的扩容,为0,执行resize()里的该分支:
 1if (newThr == 0) {
 2    float ft = (float)newCap * loadFactor;
 3    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 4              (int)ft : Integer.MAX_VALUE);
 5}
 6threshold = newThr;
 7@SuppressWarnings({"rawtypes","unchecked"})
 8    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 9table = newTab;
10..........省略.......//将原数组元素存入新数组中
复制代码
  1. 因为newCap小于MAXIMUM_CAPACITY ,ft为newCap*加载因子为12,threshold为12。创建大小为16的数组,赋值给table,并将原数组元素放入新数组中。

继续添加元素,直到扩容:

  1. oldCap为16,oldThr为12,执行resize()里的该分支:
1if (oldCap > 0) {
2    if (oldCap >= MAXIMUM_CAPACITY) {
3        threshold = Integer.MAX_VALUE;
4        return oldTab;
5    }
6    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
7             oldCap >= DEFAULT_INITIAL_CAPACITY)
8        newThr = oldThr << 1; // double threshold
9}
复制代码
  1. oldCap小于MAXIMUM_CAPACITY,将数组长度进行2倍扩容,newCap为32。oldCap>=DEFAULT_INITIAL_CAPACITY,将添加元素的阈值也进行2倍扩容,注意此时不再用加载因子去计算阈值,而是随着数组长度进行相应的2倍扩容,threshold为24。
  2. 创建大小为32的数组,赋值给table,并将原数组元素放入新数组中。
1threshold = newThr;
2@SuppressWarnings({"rawtypes","unchecked"})
3    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
4table = newTab;
5..........省略.......//将原数组元素存入新数组中
复制代码

继续添加元素,扩容到数组长度等于MAXIMUM_CAPACITY:

  1. oldCap为MAXIMUM_CAPACITY,执行resize()里的该分支:
1if (oldCap > 0) {
2    if (oldCap >= MAXIMUM_CAPACITY) {
3        threshold = Integer.MAX_VALUE;
4        return oldTab;
5    }
6    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
7             oldCap >= DEFAULT_INITIAL_CAPACITY)
8        newThr = oldThr << 1; // double threshold
9}
复制代码
  1. 因为oldCap等于MAXIMUM_CAPACITY,threshold设置为 Integer.MAX_VALUE,不再扩容,直接返回原数组。此时继续添加元素,Integer.MAX_VALUE+1=Integer.MIN_VALUE,不再大于threshold,则不再进行扩容操作了。

树化操作

1、源码:

将原本的单链表转化为双向链表,再遍历这个双向链表转化为红黑树:

 1final void treeifyBin(Node<K,V>[] tab, int hash) {
 2    int n, index; Node<K,V> e;
 3    //树形化还有一个要求就是数组长度必须大于等于64,否则继续采用扩容策略
 4    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 5        resize();
 6    else if ((e = tab[index = (n - 1) & hash]) != null) {
 7        TreeNode<K,V> hd = null, tl = null;//hd指向首节点,tl指向尾节点
 8        do {
 9            TreeNode<K,V> p = replacementTreeNode(e, null);//将链表节点转化为红黑树节点
10            if (tl == null) // 如果尾节点为空,说明还没有首节点
11                hd = p;  // 当前节点作为首节点
12            else { // 尾节点不为空,构造一个双向链表结构,将当前节点追加到双向链表的末尾
13                p.prev = tl; // 当前树节点的前一个节点指向尾节点
14                tl.next = p; // 尾节点的后一个节点指向当前节点
15            }
16            tl = p; // 把当前节点设为尾节点
17        } while ((e = e.next) != null); // 继续遍历单链表
18        //将原本的单链表转化为一个节点类型为TreeNode的双向链表
19        if ((tab[index] = hd) != null) // 把转换后的双向链表,替换数组原来位置上的单向链表
20            hd.treeify(tab); // 将当前双向链表树形化
21    }
22}
复制代码

将双向链表转化为红黑树的具体实现:

 1final void treeify(Node<K,V>[] tab) {
 2    TreeNode<K,V> root = null;  // 定义红黑树的根节点
 3    for (TreeNode<K,V> x = this, next; x != null; x = next) { // 从TreeNode双向链表的头节点开始逐个遍历
 4        next = (TreeNode<K,V>)x.next; // 头节点的后继节点
 5        x.left = x.right = null;
 6        if (root == null) {
 7            x.parent = null;
 8            x.red = false;
 9            root = x; // 头节点作为红黑树的根,设置为黑色
10        }
11        else { // 红黑树存在根节点
12            K k = x.key; 
13            int h = x.hash;
14            Class<?> kc = null;
15            for (TreeNode<K,V> p = root;;) { // 从根开始遍历整个红黑树
16                int dir, ph;
17                K pk = p.key;
18                if ((ph = p.hash) > h) // 当前红黑树节点p的hash值大于双向链表节点x的哈希值
19                    dir = -1;
20                else if (ph < h) // 当前红黑树节点的hash值小于双向链表节点x的哈希值
21                    dir = 1;
22                else if ((kc == null &&
23                          (kc = comparableClassFor(k)) == null) ||
24                         (dir = compareComparables(kc, k, pk)) == 0) // 当前红黑树节点的hash值等于双向链表节点x的哈希值,则如果key值采用比较器一致则比较key值
25                    dir = tieBreakOrder(k, pk); //如果key值也一致则比较className和identityHashCode
26
27                TreeNode<K,V> xp = p; 
28                if ((p = (dir <= 0) ? p.left : p.right) == null) { // 如果当前红黑树节点p是叶子节点,那么双向链表节点x就找到了插入的位置
29                    x.parent = xp;
30                    if (dir <= 0) //根据dir的值,插入到p的左孩子或者右孩子
31                        xp.left = x;
32                    else
33                        xp.right = x;
34                    root = balanceInsertion(root, x); //红黑树中插入元素,需要进行平衡调整(过程和TreeMap调整逻辑一模一样)
35                    break;
36                }
37            }
38        }
39    }
40    //将TreeNode双向链表转化为红黑树结构之后,由于红黑树是基于根节点进行查找,所以必须将红黑树的根节点作为数组当前位置的元素
41    moveRootToFront(tab, root);
42}
复制代码

将红黑树的根节点移动到数组的索引所在位置上:

 1static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
 2    int n;
 3    if (root != null && tab != null && (n = tab.length) > 0) {
 4        int index = (n - 1) & root.hash; //找到红黑树根节点在数组中的位置
 5        TreeNode<K,V> first = (TreeNode<K,V>)tab[index]; //获取当前数组中该位置的元素
 6        if (root != first) { //红黑树根节点不是数组当前位置的元素
 7            Node<K,V> rn;
 8            tab[index] = root;
 9            TreeNode<K,V> rp = root.prev;
10            if ((rn = root.next) != null) //将红黑树根节点前后节点相连
11                ((TreeNode<K,V>)rn).prev = rp;
12            if (rp != null)
13                rp.next = rn;
14            if (first != null) //将数组当前位置的元素,作为红黑树根节点的后继节点
15                first.prev = root;
16            root.next = first;
17            root.prev = null;
18        }
19        assert checkInvariants(root);
20    }
21}
复制代码

红黑树插入

1、源码:

 1final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
 2                               int h, K k, V v) {
 3    Class<?> kc = null;
 4    boolean searched = false;
 5    TreeNode<K,V> root = (parent != null) ? root() : this;
 6    for (TreeNode<K,V> p = root;;) {
 7        int dir, ph; K pk;
 8        if ((ph = p.hash) > h)//进行哈希值的比较
 9            dir = -1;
10        else if (ph < h)
11            dir = 1;
12        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
13            return p;
14        else if ((kc == null &&
15                  (kc = comparableClassFor(k)) == null) ||
16                 (dir = compareComparables(kc, k, pk)) == 0) {//hash值相同,则按照key进行比较
17            if (!searched) {
18                TreeNode<K,V> q, ch;
19                searched = true;
20                if (((ch = p.left) != null &&
21                     (q = ch.find(h, k, kc)) != null) ||//去左子树中查找哈希值相同,key相同的节点
22                    ((ch = p.right) != null &&
23                     (q = ch.find(h, k, kc)) != null))//去右子树中查找哈希值相同,key相同的节点
24                    return q;
25            }
26            dir = tieBreakOrder(k, pk);//通过比较k与pk的hashcode
27        }
28
29        TreeNode<K,V> xp = p;
30        if ((p = (dir <= 0) ? p.left : p.right) == null) {//找到红黑树合适的位置插入
31            Node<K,V> xpn = xp.next;
32            TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
33            if (dir <= 0) //插入到左节点或者右节点
34                xp.left = x;
35            else
36                xp.right = x;
37            xp.next = x;//插入到双向链表合适的位置
38            x.parent = x.prev = xp;
39            if (xpn != null)
40                ((TreeNode<K,V>)xpn).prev = x;
41            moveRootToFront(tab, balanceInsertion(root, x));//做插入后的平衡调整 将平衡后的红黑树节点作为数组该位置的元素
42            return null;
43        }
44    }
45}
复制代码

2、说明:

当hash冲突时,单链表元素个数超过树化阈值(TREEIFY_THRESHOLD)后,转化为红黑树存储。之后再继续冲突,则就变成往红黑树中插入元素了。关于红黑树插入元素,请看我之前写的文章:TreeMap之元素插入

红黑树拆分

1、源码:

将红黑树按照扩容后的数组,重新计算索引位置,并且拆分后的红黑树还需要判断个数,从而决定是做去树化操作还是树化操作:

 1final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
 2    TreeNode<K,V> b = this;
 3    // Relink into lo and hi lists, preserving order
 4    TreeNode<K,V> loHead = null, loTail = null; //保存在原索引的红黑树
 5    TreeNode<K,V> hiHead = null, hiTail = null; //保存在新索引的红黑树
 6    int lc = 0, hc = 0;
 7    for (TreeNode<K,V> e = b, next; e != null; e = next) {
 8        next = (TreeNode<K,V>)e.next;
 9        e.next = null;
10        if ((e.hash & bit) == 0) { //哈希值和原数组长度进行&操作,为0则在原数组的索引位置,非0则在原数组索引位置+原数组长度的新位置
11            if ((e.prev = loTail) == null)
12                loHead = e;
13            else
14                loTail.next = e;
15            loTail = e;
16            ++lc;
17        }
18        else {
19            if ((e.prev = hiTail) == null)
20                hiHead = e;
21            else
22                hiTail.next = e;
23            hiTail = e;
24            ++hc;
25        }
26    }
27
28    if (loHead != null) {
29        if (lc <= UNTREEIFY_THRESHOLD) //当红黑树的节点不大于去树化阈值,则将原索引处的红黑树进行去树化操作
30            tab[index] = loHead.untreeify(map); //红黑树根节点作为原索引处的元素  
31        else { //当红黑树的节点大于去树化阈值,则将原索引处的红黑树进行树化操作
32            tab[index] = loHead;
33            if (hiHead != null) // (else is already treeified)
34                loHead.treeify(tab);
35        }
36    }
37    if (hiHead != null) {
38        if (hc <= UNTREEIFY_THRESHOLD) //当红黑树的节点不大于去树化阈值,则将新索引处的红黑树进行去树化操作
39            tab[index + bit] = hiHead.untreeify(map); //红黑树根节点作为新索引处的元素
40        else { //当红黑树的节点大于去树化阈值,则将新索引处的红黑树进行树化操作
41            tab[index + bit] = hiHead;
42            if (loHead != null)
43                hiHead.treeify(tab);
44        }
45    }
46}
复制代码

去树化操作

1、源码:

遍历红黑树,还原成单链表结构:

 1final Node<K,V> untreeify(HashMap<K,V> map) {
 2    Node<K,V> hd = null, tl = null;
 3    for (Node<K,V> q = this; q != null; q = q.next) {  //遍历红黑树,依次将TreeNode转化为Node,还原成单链表形式
 4        Node<K,V> p = map.replacementNode(q, null);
 5        if (tl == null)
 6            hd = p;
 7        else
 8            tl.next = p;
 9        tl = p;
10    }
11    return hd;
12}
复制代码

综合示例

1、代码:

 1//插入38个元素,无hash冲突,依次存入索引0~37的位置
 2HashMap<Integer, Integer> hashMap = new HashMap<>(64);
 3for(int i=0; i<38; i++){
 4    hashMap.put(i, i);
 5}
 6//依次插入64、128、182、256、320、384,448,索引位置为0,出现hash冲突,往单链表中插入
 7for (int i=1; i <= 7; i++) {
 8    hashMap.put(64*i, 64*i);
 9}
10//插入512,hash冲突,往单链表中插入。此时单链表个数大于TREEIFY_THRESHOLD,将单链表转化为红黑树
11hashMap.put(64*8, 64*8);
12//插入576,hash冲突,往红黑树中插入
13hashMap.put(64*9, 64*9);
14//hash不冲突,保存到数组索引为38的位置,此时总元素个数为48,新增阈值为48,不做处理。
15hashMap.put(38, 38);
16//hash不冲突,保存到数组索引为39的位置,此时总元素个数为49,新增阈值为48,扩容!!!
17hashMap.put(39, 39);
复制代码

2、内部实现过程:

讨论题

  1. 为何单链表转化为红黑树,要求节点个数大于8?
  2. 为何转化为红黑树前,要求数组总长度要大于64?
  3. 为何红黑树转化为单链表,要求节点个数小于等于6?

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

信息规则

信息规则

[美] 卡尔・夏皮罗(Carl Shapiro)、[美] 哈尔・瓦里安(Hal Varian) / 张帆 / 中国人民大学出版社 / 2000-6 / 33.00元

本书的目标是,运用网络经济中的经济学知识,从经济研究和作者自己的经验中提取出适合信息相关产业的经理们的知识。本书描述的思想、概念、模型和思考方法会帮助读者作出更好的决策。一起来看看 《信息规则》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具