剖析golang map的实现

栏目: Go · 发布时间: 5年前

内容简介:[TOC]本文参考的是golang 1.10源码实现。golang中map是一个kv对集合。

[TOC]

本文参考的是golang 1.10源码实现。

golang中map是一个kv对集合。 底层使用hash table,用链表来解决冲突,通过编译器配合runtime,所有的map对象都是共用一份代码。

对比其他语言

c++使用红黑树组织,性能稍低但是稳定性很好。使用模版在编译期生成代码,好处是效率高,但是缺点是代码膨胀、编译时间也会变长。

java使用的是hash table+链表/红黑树,当bucket内元素超过某个阈值时,该bucket的链表会转换成红黑树。java为了所有map共用一份代码,规定了只有Object的子类才能使用作为map的key,缺点是基础数据类型必须使用object包装一下才能使用map。

1. 函数选择

hash函数,有加密型和非加密型。加密型的一般用于加密数据、数字摘要等,典型代表就是md5、sha1、sha256、aes256这种;非加密型的一般就是查找。在map的应用场景中,用的是查找。选择hash函数主要考察的是两点:性能、碰撞概率。

具体hash函数的性能比较可以看: http://aras-p.info/blog/2016/08/09/More-Hash-Function-Tests/

golang使用的hash算法根据硬件选择,如果cpu支持aes,那么使用aes hash,否则使用memhash,memhash是参考xxhash、cityhash实现的,性能炸裂。

把hash值映射到buckte时,golang会把bucket的数量规整为2的次幂,而有m=2 b ,则n%m=n&(m-1),用位运算规避mod的昂贵代价。

2. 结构组成

首先我们看下map的结构:

// A header for a Go map.
type hmap struct {
    // Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
    // Make sure this stays in sync with the compiler's definition.
    count     int // # live cells == size of map.  Must be first (used by len() builtin)
    flags     uint8
    B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
    noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
    hash0     uint32 // hash seed

    buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
    oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
    nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

    extra *mapextra // optional fields
}

// mapextra holds fields that are not present on all maps.
type mapextra struct {
    // If both key and value do not contain pointers and are inline, then we mark bucket
    // type as containing no pointers. This avoids scanning such maps.
    // However, bmap.overflow is a pointer. In order to keep overflow buckets
    // alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
    // overflow and oldoverflow are only used if key and value do not contain pointers.
    // overflow contains overflow buckets for hmap.buckets.
    // oldoverflow contains overflow buckets for hmap.oldbuckets.
    // The indirection allows to store a pointer to the slice in hiter.
    overflow    *[]*bmap
    oldoverflow *[]*bmap

    // nextOverflow holds a pointer to a free overflow bucket.
    nextOverflow *bmap
}

// A bucket for a Go map.
type bmap struct {
    // tophash generally contains the top byte of the hash value
    // for each key in this bucket. If tophash[0] < minTopHash,
    // tophash[0] is a bucket evacuation state instead.
    tophash [bucketCnt]uint8
    // Followed by bucketCnt keys and then bucketCnt values.
    // NOTE: packing all the keys together and then all the values together makes the
    // code a bit more complicated than alternating key/value/key/value/... but it allows
    // us to eliminate padding which would be needed for, e.g., map[int64]int8.
    // Followed by an overflow pointer.
}

一个map主要是由三个结构构成:

  1. hmap --- map的最外层的数据结构,包括了map的各种基础信息、如大小、bucket。
  2. mapextra --- 记录map的额外信息,例如overflow bucket。
  3. bmap --- 代表bucket,每一个bucket最多放8个kv,最后由一个overflow字段指向下一个bmap,注意key、value、overflow字段都不显示定义,而是通过maptype计算偏移获取的。
剖析golang map的实现

hmap.001.png

其中hmap.extra.nextOverflow指向的是预分配的overflow bucket,预分配的用完了那么值就变成nil。

hmap.noverflow是overflow bucket的数量,当B小于16时是准确值,大于等于16时是大概的值。

hmap.count是当前map的元素个数,也就是len()返回的值。

2.1 设计原理

介绍完结构,我们就细说一下这么设计的原因。

2.1.1 bmap细节

在golang map中出现冲突时,不是每一个key都申请一个结构通过链表串起来, 而是以bmap为最小粒度挂载,一个bmap可以放8个kv。这样减少对象数量,减轻管理内存的负担,利于gc。

如果插入时,bmap中key超过8,那么就会申请一个新的bmap(overflow bucket)挂在这个bmap的后面形成链表, 优先用预分配的overflow bucket,如果预分配的用完了,那么就malloc一个挂上去。注意golang的map不会shrink,内存只会越用越多,overflow bucket中的key全删了也不会释放

hash值的高8位存储在bucket中的tophash字段。每个桶最多放8个kv对,所以tophash类型是数组[8]uint8。 把高八位存储起来,这样不用完整比较key就能过滤掉不符合的key,加快查询速度。实际上当hash值的高八位小于常量minTopHash时,会加上minTopHash,区间[0, minTophash)的值用于特殊标记。 查找key时,计算hash值,用hash值的高八位在tophash中查找,有tophash相等的,再去比较key值是否相同。

????? 这里我不太清楚,1.为啥小于minTopHash才加 2.为什么不是位运算而用加。 刚好top在[0,minHash),或着加上minHash之后溢出到这个区间,岂不是可能误判?

// tophash calculates the tophash value for hash.
func tophash(hash uintptr) uint8 {
    top := uint8(hash >> (sys.PtrSize*8 - 8))
    if top < minTopHash {
        top += minTopHash
    }
    return top
}

bmap中所有key存在一块,所有value存在一块,这样做方便内存对齐。
当key大于128字节时,bucket的key字段存储的会是指针,指向key的实际内容;value也是一样。

我们还知道golang中没有范型,为了支持map的范型,golang定义了一个maptype类型,定义了这类key用什么hash函数、bucket的大小、怎么比较之类的,通过这个变量来实现范型。

2.1.2 扩容设计

bcuket挂接的链表越来越长,性能会退化,那么就要进行扩容,扩大bucket的数量。

当元素个数/bucket个数大于等于6.5时,就会进行扩容,把bucket数量扩成原本的两倍,当hash表扩容之后,需要将那些老数据迁移到新table上(源代码中称之为evacuate), 数据搬迁不是一次性完成,而是逐步的完成(在insert和remove时进行搬移),这样就分摊了扩容的耗时。同时为了避免有个bucket一直访问不到导致扩容无法完成,还会进行一个顺序扩容,每次因为写操作搬迁对应bucket后,还会按顺序搬迁未搬迁的bucket,所以最差情况下n次写操作,就保证搬迁完大小为n的map。

扩容会建立一个大小是原来2倍的新的表,将旧的bucket搬到新的表中之后,并不会将旧的bucket从oldbucket中删除,而是加上一个已删除的标记。

只有当所有的bucket都从旧表移到新表之后,才会将oldbucket释放掉。 如果扩容过程中,阈值又超了呢?如果正在扩容,那么不会再进行扩容。

总体思路描述完,就看源码创建、查询、赋值、删除的具体实现。

3. 源码实现

3.1 创建

// makemap implements Go map creation for make(map[k]v, hint).
// If the compiler has determined that the map or the first bucket
// can be created on the stack, h and/or bucket may be non-nil.
// If h != nil, the map can be created directly in h.
// If h.buckets != nil, bucket pointed to can be used as the first bucket.
func makemap(t *maptype, hint int, h *hmap) *hmap {
    if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) {
        hint = 0
    }

    // initialize Hmap
    if h == nil {
        h = new(hmap)
    }
    h.hash0 = fastrand()

    // find size parameter which will hold the requested # of elements
    B := uint8(0)
    for overLoadFactor(hint, B) {
        B++
    }
    h.B = B

    // allocate initial hash table
    // if B == 0, the buckets field is allocated lazily later (in mapassign)
    // If hint is large zeroing this memory could take a while.
    if h.B != 0 {
        var nextOverflow *bmap
        h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
        if nextOverflow != nil {
            h.extra = new(mapextra)
            h.extra.nextOverflow = nextOverflow
        }
    }

    return h
}

hint是一个启发值,启发初建map时创建多少个bucket,如果hint是0那么就先不分配bucket,lazy分配。大概流程就是设置一下hash seed、bucket数量、实际申请bucket之类的,流程很简单。

然后我们在看下申请bucket实际干了啥:

// makeBucketArray initializes a backing array for map buckets.
// 1<<b is the minimum number of buckets to allocate.
// dirtyalloc should either be nil or a bucket array previously
// allocated by makeBucketArray with the same t and b parameters.
// If dirtyalloc is nil a new backing array will be alloced and
// otherwise dirtyalloc will be cleared and reused as backing array.
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
    base := bucketShift(b)
    nbuckets := base
    // For small b, overflow buckets are unlikely.
    // Avoid the overhead of the calculation.
    if b >= 4 {
        // Add on the estimated number of overflow buckets
        // required to insert the median number of elements
        // used with this value of b.
        nbuckets += bucketShift(b - 4)
        sz := t.bucket.size * nbuckets
        up := roundupsize(sz)
        if up != sz {
            nbuckets = up / t.bucket.size
        }
    }

    if dirtyalloc == nil {
        buckets = newarray(t.bucket, int(nbuckets))
    } else {
        // dirtyalloc was previously generated by
        // the above newarray(t.bucket, int(nbuckets))
        // but may not be empty.
        buckets = dirtyalloc
        size := t.bucket.size * nbuckets
        if t.bucket.kind&kindNoPointers == 0 {
            memclrHasPointers(buckets, size)
        } else {
            memclrNoHeapPointers(buckets, size)
        }
    }

    if base != nbuckets {
        // We preallocated some overflow buckets.
        // To keep the overhead of tracking these overflow buckets to a minimum,
        // we use the convention that if a preallocated overflow bucket's overflow
        // pointer is nil, then there are more available by bumping the pointer.
        // We need a safe non-nil pointer for the last overflow bucket; just use buckets.
        nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
        last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
        last.setoverflow(t, (*bmap)(buckets))
    }
    return buckets, nextOverflow
}

默认创建2 b 个bucket,如果 b大于等于4,那么就预先额外创建一些overflow bucket。除了最后一个overflow bucket,其余overflow bucket的overflow指针都是nil,最后一个overflow bucket的overflow指针指向bucket数组第一个元素,作为哨兵,说明到了到结尾了.

剖析golang map的实现

创建简单流程

3.2 查询

// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
// it will return a reference to the zero object for the value type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
    if raceenabled && h != nil {
        callerpc := getcallerpc()
        pc := funcPC(mapaccess1)
        racereadpc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled && h != nil {
        msanread(key, t.key.size)
    }
    if h == nil || h.count == 0 {
        return unsafe.Pointer(&zeroVal[0])
    }
    if h.flags&hashWriting != 0 {
        throw("concurrent map read and map write")
    }
    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))
    m := bucketMask(h.B)
    b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
    if c := h.oldbuckets; c != nil {
        if !h.sameSizeGrow() {
            // There used to be half as many buckets; mask down one more power of two.
            m >>= 1
        }
        oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
        if !evacuated(oldb) {
            b = oldb
        }
    }
    top := tophash(hash)
    for ; b != nil; b = b.overflow(t) {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            if t.indirectkey {
                k = *((*unsafe.Pointer)(k))
            }
            if alg.equal(key, k) {
                v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
                if t.indirectvalue {
                    v = *((*unsafe.Pointer)(v))
                }
                return v
            }
        }
    }
    return unsafe.Pointer(&zeroVal[0])
}
  1. 先定位出bucket,如果正在扩容,并且这个bucket还没搬到新的hash表中,那么就从老的hash表中查找。

  2. 在bucket中进行顺序查找,使用高八位进行快速过滤,高八位相等,再比较key是否相等,找到就返回value。如果当前bucket找不到,就往下找overflow bucket,都没有就返回零值。

这里我们可以看到, 访问的时候,并不进行扩容的数据搬迁。并且并发有写操作时抛异常

这里要注意的是,t.bucketsize并不是bmap的size,而是bmap加上存储key、value、overflow指针,所以查找bucket的时候时候用的不是bmap的szie。

剖析golang map的实现

查询简单流程

3.3 赋值

// Like mapaccess, but allocates a slot for the key if it is not present in the map.
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
    if h == nil {
        panic(plainError("assignment to entry in nil map"))
    }
    if raceenabled {
        callerpc := getcallerpc()
        pc := funcPC(mapassign)
        racewritepc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled {
        msanread(key, t.key.size)
    }
    if h.flags&hashWriting != 0 {
        throw("concurrent map writes")
    }
    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))

    // Set hashWriting after calling alg.hash, since alg.hash may panic,
    // in which case we have not actually done a write.
    h.flags |= hashWriting

    if h.buckets == nil {
        h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
    }

again:
    bucket := hash & bucketMask(h.B)
    if h.growing() {
        growWork(t, h, bucket)
    }
    b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
    top := tophash(hash)

    var inserti *uint8
    var insertk unsafe.Pointer
    var val unsafe.Pointer
    for {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                if b.tophash[i] == empty && inserti == nil {
                    inserti = &b.tophash[i]
                    insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
                    val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
                }
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            if t.indirectkey {
                k = *((*unsafe.Pointer)(k))
            }
            if !alg.equal(key, k) {
                continue
            }
            // already have a mapping for key. Update it.
            if t.needkeyupdate {
                typedmemmove(t.key, k, key)
            }
            val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
            goto done
        }
        ovf := b.overflow(t)
        if ovf == nil {
            break
        }
        b = ovf
    }

    // Did not find mapping for key. Allocate new cell & add entry.

    // If we hit the max load factor or we have too many overflow buckets,
    // and we're not already in the middle of growing, start growing.
    if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
        hashGrow(t, h)
        goto again // Growing the table invalidates everything, so try again
    }

    if inserti == nil {
        // all current buckets are full, allocate a new one.
        newb := h.newoverflow(t, b)
        inserti = &newb.tophash[0]
        insertk = add(unsafe.Pointer(newb), dataOffset)
        val = add(insertk, bucketCnt*uintptr(t.keysize))
    }

    // store new key/value at insert position
    if t.indirectkey {
        kmem := newobject(t.key)
        *(*unsafe.Pointer)(insertk) = kmem
        insertk = kmem
    }
    if t.indirectvalue {
        vmem := newobject(t.elem)
        *(*unsafe.Pointer)(val) = vmem
    }
    typedmemmove(t.key, insertk, key)
    *inserti = top
    h.count++

done:
    if h.flags&hashWriting == 0 {
        throw("concurrent map writes")
    }
    h.flags &^= hashWriting
    if t.indirectvalue {
        val = *((*unsafe.Pointer)(val))
    }
    return val
}
  1. hash表如果正在扩容,并且这次要操作的bucket还没搬到新hash表中,那么先进行搬迁(扩容细节下面细说)。

  2. 在buck中寻找key,同时记录下第一个空位置,如果找不到,那么就在空位置中插入数据;如果找到了,那么就更新对应的value;

  3. 找不到key就看下需不需要扩容,需要扩容并且没有正在扩容,那么就进行扩容,然后回到第一步。

  4. 找不到key,不需要扩容,但是没有空slot,那么就分配一个overflow bucket挂在链表结尾,用新bucket的第一个slot放存放数据。

3.4 删除

func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
    if raceenabled && h != nil {
        callerpc := getcallerpc()
        pc := funcPC(mapdelete)
        racewritepc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled && h != nil {
        msanread(key, t.key.size)
    }
    if h == nil || h.count == 0 {
        return
    }
    if h.flags&hashWriting != 0 {
        throw("concurrent map writes")
    }

    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))

    // Set hashWriting after calling alg.hash, since alg.hash may panic,
    // in which case we have not actually done a write (delete).
    h.flags |= hashWriting

    bucket := hash & bucketMask(h.B)
    if h.growing() {
        growWork(t, h, bucket)
    }
    b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
    top := tophash(hash)
search:
    for ; b != nil; b = b.overflow(t) {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            k2 := k
            if t.indirectkey {
                k2 = *((*unsafe.Pointer)(k2))
            }
            if !alg.equal(key, k2) {
                continue
            }
            // Only clear key if there are pointers in it.
            if t.indirectkey {
                *(*unsafe.Pointer)(k) = nil
            } else if t.key.kind&kindNoPointers == 0 {
                memclrHasPointers(k, t.key.size)
            }
            v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
            if t.indirectvalue {
                *(*unsafe.Pointer)(v) = nil
            } else if t.elem.kind&kindNoPointers == 0 {
                memclrHasPointers(v, t.elem.size)
            } else {
                memclrNoHeapPointers(v, t.elem.size)
            }
            b.tophash[i] = empty
            h.count--
            break search
        }
    }

    if h.flags&hashWriting == 0 {
        throw("concurrent map writes")
    }
    h.flags &^= hashWriting
}
  1. 如果正在扩容,并且操作的bucket还没搬迁完,那么搬迁bucket。

  2. 找出对应的key,如果key、value是包含指针的那么会清理指针指向的内存,否则不会回收内存。

3.5 扩容

首先通过赋值、删除流程,我们可以知道, 触发扩容的是赋值、删除操作 ,具体判断要不要扩容的代码片段如下:

// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
func overLoadFactor(count int, B uint8) bool {
    return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}

// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
// Note that most of these overflow buckets must be in sparse use;
// if use was dense, then we'd have already triggered regular map growth.
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
    // If the threshold is too low, we do extraneous work.
    // If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
    // "too many" means (approximately) as many overflow buckets as regular buckets.
    // See incrnoverflow for more details.
    if B > 15 {
        B = 15
    }
    // The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
    return noverflow >= uint16(1)<<(B&15)
}

{
    ....
    // If we hit the max load factor or we have too many overflow buckets,
    // and we're not already in the middle of growing, start growing.
    if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
        hashGrow(t, h)
        goto again // Growing the table invalidates everything, so try again
    }
    ....
}

翻译一下代码,意思就是:

func overLoadFactor(countint, Buint8) bool {
  // return count>bucketCnt&&uintptr(count) >loadFactorNum*(bucketShift(B)/loadFactorDen)
   return 元素个数>8 && count>bucket数量*6.5
   其中loadFactorNum是常量13,loadFactorDen是常量2,所以是6.5
   bucket数量不算overflow bucket
}
​
func tooManyOverflowBuckets(noverflowuint16, Buint8) bool{
   if B > 15 {
       B=15
   }
   // The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
   return noverflow>=uint16(1)<<(B&15)
}


if (不是正在扩容 && (元素个数/bucket数超过某个值 || 太多overflow bucket)) {
    进行扩容
}

判断完扩容后,如果需要扩容,那么第一步需要做的,就是对hash表进行扩容:

//仅对hash表进行扩容,这里不进行搬迁
func hashGrow(t *maptype, h *hmap) {
    // If we've hit the load factor, get bigger.
    // Otherwise, there are too many overflow buckets,
    // so keep the same number of buckets and "grow" laterally.
    bigger := uint8(1)
    if !overLoadFactor(h.count+1, h.B) {
        bigger = 0
        h.flags |= sameSizeGrow
    }
    oldbuckets := h.buckets
    newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

    flags := h.flags &^ (iterator | oldIterator)
    if h.flags&iterator != 0 {
        flags |= oldIterator
    }
    // commit the grow (atomic wrt gc)
    h.B += bigger
    h.flags = flags
    h.oldbuckets = oldbuckets
    h.buckets = newbuckets
    h.nevacuate = 0
    h.noverflow = 0

    if h.extra != nil && h.extra.overflow != nil {
        // Promote current overflow buckets to the old generation.
        if h.extra.oldoverflow != nil {
            throw("oldoverflow is not nil")
        }
        h.extra.oldoverflow = h.extra.overflow
        h.extra.overflow = nil
    }
    if nextOverflow != nil {
        if h.extra == nil {
            h.extra = new(mapextra)
        }
        h.extra.nextOverflow = nextOverflow
    }

    // the actual copying of the hash table data is done incrementally
    // by growWork() and evacuate().
}

扩容的函数hashGrow其实仅仅是进行一些空间分配,字段的初始化,实际的搬迁操作是在growWork函数中

func growWork(t *maptype, h *hmap, bucket uintptr) {
    // make sure we evacuate the oldbucket corresponding
    // to the bucket we're about to use
    evacuate(t, h, bucket&h.oldbucketmask())

    // evacuate one more oldbucket to make progress on growing
    if h.growing() {
        evacuate(t, h, h.nevacuate)
    }
}

evacuate是进行具体搬迁某个bucket的函数,可以看出 growWork会搬迁两个bucket,一个是入参bucket;另一个是h.nevacuate。这个nevacuate是一个顺序累加的值 。可以想想如果每次仅仅搬迁进行写操作(赋值/删除)的bucket,那么有可能某些bucket就是一直没有机会访问到,那么扩容就一直没法完成,总是在扩容中的状态,因此会额外进行一次顺序迁移,理论上,有N个old bucket,最多N次写操作,那么必定会搬迁完。

然后我们再看下evacuate具体的实现

func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
    b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
    newbit := h.noldbuckets()
    if !evacuated(b) {
        // TODO: reuse overflow buckets instead of using new ones, if there
        // is no iterator using the old buckets.  (If !oldIterator.)

        // xy contains the x and y (low and high) evacuation destinations.
        var xy [2]evacDst
        x := &xy[0]
        x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
        x.k = add(unsafe.Pointer(x.b), dataOffset)
        x.v = add(x.k, bucketCnt*uintptr(t.keysize))

        if !h.sameSizeGrow() {
            // Only calculate y pointers if we're growing bigger.
            // Otherwise GC can see bad pointers.
            y := &xy[1]
            y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
            y.k = add(unsafe.Pointer(y.b), dataOffset)
            y.v = add(y.k, bucketCnt*uintptr(t.keysize))
        }

        for ; b != nil; b = b.overflow(t) {
            k := add(unsafe.Pointer(b), dataOffset)
            v := add(k, bucketCnt*uintptr(t.keysize))
            for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
                top := b.tophash[I]
                if top == empty {
                    b.tophash[i] = evacuatedEmpty
                    continue
                }
                if top < minTopHash {
                    throw("bad map state")
                }
                k2 := k
                if t.indirectkey {
                    k2 = *((*unsafe.Pointer)(k2))
                }
                var useY uint8
                if !h.sameSizeGrow() {
                    // Compute hash to make our evacuation decision (whether we need
                    // to send this key/value to bucket x or bucket y).
                    hash := t.key.alg.hash(k2, uintptr(h.hash0))
                    if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) {
                        // If key != key (NaNs), then the hash could be (and probably
                        // will be) entirely different from the old hash. Moreover,
                        // it isn't reproducible. Reproducibility is required in the
                        // presence of iterators, as our evacuation decision must
                        // match whatever decision the iterator made.
                        // Fortunately, we have the freedom to send these keys either
                        // way. Also, tophash is meaningless for these kinds of keys.
                        // We let the low bit of tophash drive the evacuation decision.
                        // We recompute a new random tophash for the next level so
                        // these keys will get evenly distributed across all buckets
                        // after multiple grows.
                        useY = top & 1
                        top = tophash(hash)
                    } else {
                        if hash&newbit != 0 {
                            useY = 1
                        }
                    }
                }

                if evacuatedX+1 != evacuatedY {
                    throw("bad evacuatedN")
                }

                b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
                dst := &xy[useY]                 // evacuation destination

                if dst.i == bucketCnt {
                    dst.b = h.newoverflow(t, dst.b)
                    dst.i = 0
                    dst.k = add(unsafe.Pointer(dst.b), dataOffset)
                    dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
                }
                dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
                if t.indirectkey {
                    *(*unsafe.Pointer)(dst.k) = k2 // copy pointer
                } else {
                    typedmemmove(t.key, dst.k, k) // copy value
                }
                if t.indirectvalue {
                    *(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
                } else {
                    typedmemmove(t.elem, dst.v, v)
                }
                dst.i++
                // These updates might push these pointers past the end of the
                // key or value arrays.  That's ok, as we have the overflow pointer
                // at the end of the bucket to protect against pointing past the
                // end of the bucket.
                dst.k = add(dst.k, uintptr(t.keysize))
                dst.v = add(dst.v, uintptr(t.valuesize))
            }
        }
        // Unlink the overflow buckets & clear key/value to help GC.
        if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
            b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
            // Preserve b.tophash because the evacuation
            // state is maintained there.
            ptr := add(b, dataOffset)
            n := uintptr(t.bucketsize) - dataOffset
            memclrHasPointers(ptr, n)
        }
    }

    if oldbucket == h.nevacuate {
        advanceEvacuationMark(h, t, newbit)
    }
}

在advanceEvacuationMark中进行nevacuate的累加,遇到已经迁移的bucket会继续累加,一次最多加1024。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法小时代

算法小时代

Serge Abiteboul、Gilles Dowek / 任铁 / 人民邮电出版社 / 2017-10-1 / 39.00元

算法与人工智能是当下最热门的话题之一,技术大发展的同时也引发了令人忧心的技术和社会问题。本书生动介绍了算法的数学原理和性质,描述了算法单纯、本质的功能,分析了算法和人工智能对人类社会现状及未来发展的影响力及其成因。一起来看看 《算法小时代》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

SHA 加密
SHA 加密

SHA 加密工具