借助Spark调度MPI作业

栏目: 服务器 · 发布时间: 6年前

内容简介:在Spark-2.4.0中社区提出一种新的Spark调度执行方式,名为众所周知,Spark其实本质上仍然是MapReduce架构,它能颠覆Hadoop的很重要一点是它提供了极其易用的API,用户不再需要绞尽脑汁将问题抽象成Map和Reduce,而是直接通过Spark提供的一个个算子来组织业务逻辑。新增Barrier Execution Mode当然不能破坏Spark本身的易用性,沿用原有的RDD API风格,例如调起一个MPI作业的大致轮廓为:上述代码首先将数据写到本地磁盘,以供mpi程序读取,在正式启动

在Spark-2.4.0中社区提出一种新的Spark调度执行方式,名为 Barrier Execution Mode ,旨在通过Spark去调度分布式ML/DL(机器学习/深度学习)训练作业,这种训练作业一般是通过其他框架实现,例如MPI、TensorFlow等。由于Spark本身的计算框架是遵循MapReduce架构的,所以在调度执行时,每个Task都是独立执行的。然而,MPI这类分布式计算作业运行时需要所有Task一起执行,Task与Task之间需要相互通信。为了将诸如MPI分布式机器学习作业很好地与Spark结合,Spark社区提出一种新的Barrier Scheduler,可保证所有的Task全部调起(当然要保证资源足够)。

API风格介绍

众所周知,Spark其实本质上仍然是MapReduce架构,它能颠覆Hadoop的很重要一点是它提供了极其易用的API,用户不再需要绞尽脑汁将问题抽象成Map和Reduce,而是直接通过Spark提供的一个个算子来组织业务逻辑。新增Barrier Execution Mode当然不能破坏Spark本身的易用性,沿用原有的RDD API风格,例如调起一个MPI作业的大致轮廓为:

rdd.barrier().mapPartitions { (iter, context) =>
  // Maybe write iter to disk.
  ???
  // Wait until all tasks finished writing.
  context.barrier()
  // The 0-th task launches an MPI job.
  if (context.partitionId() == 0) {
    val hosts = context.getTaskInfos().map(_.host)
    // Set up MPI machine file using host infos.
    ???
    // Launch the MPI job by calling mpirun.
    ???
  }
  // Wait until the MPI job finished.
  context.barrier()
  // Collect output and return.
  ???
}

上述代码首先将数据写到本地磁盘,以供mpi程序读取,在正式启动mpi程序前,先通过 barrier 操作同步等待所有Task完成前序工作,然后通过第一个Task(一般为rank=0的mpi进程)去拉起一个mpi job,拉起mpi job的参数通过 context 相关方法获取,最后等待所有mpi任务执行完毕,mpi任务将结果写到本地磁盘,由spark最后完成结果收集。

小结

如今大数据平台或机器学习平台一般都会提供Spark作业的调度,而对mpi作业的支持可能没有统一的调度方式,如果你的作业恰好需要mpi来实现,却没有一个平台来支持,这个时候我们可能会给平台方提需求,要求其支持你的mpi作业调度,但是这就拉长了你的开发周期,很多东西变得不可控,通过上述spark拉起mpi作业的方式,你可以将你的mpi作业变成一个spark作业,快速完成部署。另一方面,mpi作业的输入数据一般是要提前预处理好,这部分工作spark完全可以胜任,这样就可以通过pipeline的方式将整个业务逻辑串起来。


以上所述就是小编给大家介绍的《借助Spark调度MPI作业》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

统计自然语言处理基础

统计自然语言处理基础

Chris Manning、Hinrich Schütze / 苑春法、李伟、李庆中 / 电子工业出版社 / 2005-1 / 55.00元

《统计自然语言处理基础:国外计算机科学教材系列》是一本全面系统地介绍统计自然语言处理技术的专著,被国内外许多所著名大学选为计算语言学相关课程的教材。《统计自然语言处理基础:国外计算机科学教材系列》涵盖的内容十分广泛,分为四个部分,共16章,包括了构建自然语言处理软件工具将用到的几乎所有理论和算法。全书的论述过程由浅入深,从数学基础到精确的理论算法,从简单的词法分析到复杂的语法分析,适合不同水平的读......一起来看看 《统计自然语言处理基础》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具