要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

栏目: Java · 发布时间: 5年前

内容简介:DeepMind、OpenAI 和暴雪对于星际争霸 2 人工智能的研究仍在进行中,面对复杂的即时战略游戏,人们目前还鲜有进展。尽管近期Reaver 是一个模块化的深度强化学习框架,可提供比大多数开源解决方案更快的单机并行化能力,支持星际争霸 2、OpenAI Gym、Atari、MuJoCo 等常见环境,其网络被定义为简单的 Keras 模型,易于配置和共享设置。在示例中,Reaver 在不到 10 秒钟内通过了 CartPole-v0 游戏,在 4 核 CPU 笔记本上每秒采样率为 5000 左右。

DeepMind、OpenAI 和暴雪对于星际争霸 2 人工智能的研究仍在进行中,面对复杂的即时战略游戏,人们目前还鲜有进展。尽管近期 腾讯 、南大、 伯克利 等均在星际 II 上攻克了全场游戏,但其训练规模并不是个体研究者所能 handle 的。最近,来自 University of Tartu 的 Roman Ring 开源了首个星际争霸 2 的智能体项目,我们也可以在这个前沿领域里展开自己的研究了。

要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

Reaver 是一个模块化的深度强化学习框架,可提供比大多数开源解决方案更快的单机并行化能力,支持星际争霸 2、OpenAI Gym、Atari、MuJoCo 等常见环境,其网络被定义为简单的 Keras 模型,易于配置和共享设置。在示例中,Reaver 在不到 10 秒钟内通过了 CartPole-v0 游戏,在 4 核 CPU 笔记本上每秒采样率为 5000 左右。

Reaver 可以在 30 分钟内攻克星际争霸 2 的 MoveToBeacon 小游戏,和 DeepMind 得到的结果相当,仅使用了配置 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本,你也可以在 Google Colab 上在线跑跑对比一下。

具体来说,Reaver 具备以下特征:

性能:现有研究的多数强化学习基线通常针对进程之间基于消息的通信(如 MPI)进行调整。这对于 DeepMind、OpenAI 等拥有大规模分布式 RL 设置的公司来说是有意义的,但对于只拥有一个计算机/HPC 节点的研究人员或发烧友来说,这似乎是一个很大的瓶颈。因此,Reaver 采用了共享内存,与之前基于消息的并行化的项目相比,速度提升了 2 倍。具体来说,Reaver 通过 lock-free 的方式利用共享内存,可以专门针对这种情况优化。这种方法可以在星际争霸 II 采样率上速度提升了 2 倍(在一般情况下可以实现 100 倍的加速),其最主要的瓶颈在于 GPU 的输入/输出管道。

模块化:许多 RL 基线或多或少都是模块化的,但经常紧紧地与作者使用的模型/环境耦合。以我个人经验来看,当我只专注于星际争霸 2 游戏时,每一次实验或调试都是一个令人沮丧的长期过程。而有了 Reaver 之后,我就能够在一行代码中交换环境(即使是从 SC2 到雅达利或 CartPole)。对于模型来说也是如此——任何 Keras 模型都可以,只要它遵守基本 API 契约(inputs = agent obs, outputs = logits + value)。Reaver 的三个核心模块 envs、models、 和 agents 基本上是完全独立的。这保证了在一个模块上的功能扩展可以无缝地连接到其它模块上。

可配置性:现有的智能体通常具有几十个不同的配置参数,共享这些参数似乎让每一个参与其中的人都很头疼。我最近偶然发现了这个问题的一个有趣的解决方案——gin-config,它支持将任意 Python 可调用函数配置为类似 Python 的配置文件和命令行参数。试验后发现 gin-config 可以实现仅用一个文件共享全部训练流程环境配置。所有的配置都能轻松地以.gin 文件的形式进行分享,包括所有超参数、环境变量和模块定义。

不过时:DL 中充满变数,即使只有一年历史的代码库也会过时。我使用即将面世的 TensorFlow 2.0 API 写 Reaver(大多使用 tf.keras,避开 tf.contrib),希望 Reaver 不会遭此厄运。

Reaver 的用途并不局限于星际争霸 II 智能体的深度强化学习训练,如果有任何扩展的想法欢迎分享给我。我计划近期添加 VizDoom 环境到这个项目中去。

python -m reaver.run --env MoveToBeacon --agent a2c --envs 4 2> stderr.log

只需通过一行代码,Reaver 就可以直接配置一个训练任务,如上所示。Reaver 的奖励函数可以很快收敛到大约 25-26RMe(mean episode rewards),这和 DeepMind 在该环境(MoveToBeacon)中得到的结果相当。具体的训练时间取决于你自己的硬件。以下日志数据是通过配置了 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本训练了 30 分钟得到的。

| T    118 | Fr     51200 | Ep    212 | Up    100 | RMe    0.14 | RSd    0.49 | RMa    3.00 | RMi    0.00 | Pl    0.017 | Vl    0.008 | El 0.0225 | Gr    3.493 | Fps   433 |
| T    238 | Fr    102400 | Ep    424 | Up    200 | RMe    0.92 | RSd    0.97 | RMa    4.00 | RMi    0.00 | Pl   -0.196 | Vl    0.012 | El 0.0249 | Gr    1.791 | Fps   430 |
| T    359 | Fr    153600 | Ep    640 | Up    300 | RMe    1.80 | RSd    1.30 | RMa    6.00 | RMi    0.00 | Pl   -0.035 | Vl    0.041 | El 0.0253 | Gr    1.832 | Fps   427 |
...
| T   1578 | Fr    665600 | Ep   2772 | Up   1300 | RMe   24.26 | RSd    3.19 | RMa   29.00 | RMi    0.00 | Pl    0.050 | Vl    1.242 | El 0.0174 | Gr    4.814 | Fps   421 |
| T   1695 | Fr    716800 | Ep   2984 | Up   1400 | RMe   24.31 | RSd    2.55 | RMa   30.00 | RMi   16.00 | Pl    0.005 | Vl    0.202 | El 0.0178 | Gr   56.385 | Fps   422 |
| T   1812 | Fr    768000 | Ep   3200 | Up   1500 | RMe   24.97 | RSd    1.89 | RMa   31.00 | RMi   21.00 | Pl   -0.075 | Vl    1.385 | El 0.0176 | Gr   17.619 | Fps   423 |

要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

在 MoveToBeacon 环境上的 RMe 学习曲线。

基准评测分数

要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

其中:

  • Human Expert 是由 DeepMind 从战网天梯的大师级玩家中收集的数据

  • DeepMind ReDRL 是当前业内最佳结果,出自 DeepMind 2018 年 6 月的论文《 Relational Deep Reinforcement Learning

  • DeepMind SC2LE 成绩出自 DeepMind 和暴雪 2017 年 8 月的论文《StarCraft II: A New Challenge for Reinforcement Learning》

  • Reaver(A2C)是通过训练 reaver.agents.A2C 智能体获得的结果,其在硬件上尽可能复制 SC2LE 的架构。通过训练智能体 --test 模组 100 个迭代,计算总奖励值,收集结果。表中列出的是平均值、标准差(在括号中),以及最小&最大值(在方括号中)。

要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

训练细节,注意这些训练时间都是在配置了 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本上得到的。我并没有花费太多时间来调超参数,而是先展示其可学习性,但至少在 MoveToBeacon 环境中,我已经显著地降低了训练样本数。

要玩转这个星际争霸II开源AI,你只需要i5+GTX1050

不同环境下的 RMe 学习曲线和标准差。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

我的第一本算法书

我的第一本算法书

[日]石田保辉、[日]宮崎修一 / 张贝 / 人民邮电出版社 / 2018-10 / 69.00元

本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。第1章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲 - 赫尔曼密钥交换、k-means 算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深......一起来看看 《我的第一本算法书》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具