卷积神经网络(CNN)的相关概念

栏目: 数据库 · 发布时间: 6年前

内容简介:说卷积神经网络前,我们要先说一下传统神经网络存在的一些问题,上图是一个典型的传统神经网络的示例图。设想一个场景,假设我们要训练的的样本图片是100x100(像素)的,那么整张图片总共就是有10000个像素,那么在定义一个 传统神经网络的时候,输入层(input layer)就需要有1w个神经元,那么如果我们的中间的隐藏层(hidden layer)也需要有1w个神经元,那么总共需要的参数(权值)就高达1亿个(1w*1w),试想一下,这还只是一张100x100的图片就需要这么多的参数,如果图片更大之后呢,可
卷积神经网络(CNN)的相关概念

说卷积神经网络前,我们要先说一下传统神经网络存在的一些问题,上图是一个典型的传统神经网络的示例图。设想一个场景,假设我们要训练的的样本图片是100x100(像素)的,那么整张图片总共就是有10000个像素,那么在定义一个 传统神经网络的时候,输入层(input layer)就需要有1w个神经元,那么如果我们的中间的隐藏层(hidden layer)也需要有1w个神经元,那么总共需要的参数(权值)就高达1亿个(1w*1w),试想一下,这还只是一张100x100的图片就需要这么多的参数,如果图片更大之后呢,可想而知整个神经网络的计算量有多恐怖。当然,一旦权重多了之后,则必须要有足够量的样本进行训练,否则就会出现过拟合的现象。因此我们可以知道,传统神经网络有以下两个问题:

  • 权值太多,计算量太大
  • 权值太多,如果没有大量样本支撑则会出现过拟合现象

卷积神经网络

卷积

什么是卷积?

在了解卷积神经网络之前我们需要知道什么是卷积。对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器(filter),即带着一组固定权重的神经元。多个滤波器叠加便成了卷积层。

卷积神经网络(CNN)的相关概念

举个具体的例子。比如下图中,图中左边部分是原始输入数据,图中中间部分是滤波器filter,图中右边是输出的新的二维数据。

卷积神经网络(CNN)的相关概念

分解下上图

卷积神经网络(CNN)的相关概念
对应位置上是数字先相乘后相加
卷积神经网络(CNN)的相关概念
=
卷积神经网络(CNN)的相关概念

中间滤波器filter与数据窗口做内积,其具体计算过程则是:4x0 + 0x0 + 0x0 + 0x0 + 0x1 + 0x1 + 0x0 + 0x1 + -4x2 = -8

图像上的卷积

在下图对应的计算过程中,输入是一定区域大小(width*height)的数据,和滤波器filter(带着一组固定权重的神经元)做内积后等到新的二维数据。

如下图所示:

卷积神经网络(CNN)的相关概念

具体来说,左边是图像输入,中间部分就是滤波器filter(带着一组固定权重的神经元),不同的滤波器filter会得到不同的输出数据,比如颜色深浅、轮廓。相当于如果想提取图像的不同特征,则用不同的滤波器filter,提取想要的关于图像的特定信息:颜色深浅或轮廓。用一句话解释不同滤波器之间的差异就是: 一千个读者就有一千个哈姆雷特

什么是卷积神经网络?

**卷积神经网络(Convolutional Neural Network, CNN)**是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用。但是卷积神经网络默认输入是图像,可以让我们把特定的性质编码入网络结构,使是我们的前馈函数更加有效率,并减少了大量参数。

**具有三维体积的神经元(3D volumes of neurons) **

卷积神经网络利用输入是图片的特点,把神经元设计成三个维度 : width, height, depth(注意这个depth不是神经网络的深度,而是用来描述神经元的) 。比如输入的图片大小是 32 × 32 × 3 (rgb),那么输入神经元就也具有 32×32×3 的维度。下面是图解:

卷积神经网络(CNN)的相关概念

一个卷积神经网络各层应用实例

卷积神经网络(CNN)的相关概念

上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是车 那是什么车。

我们按照从左到右的方向来理一下:

左边:

  • 最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。CNN只对训练集做“去均值”这一步。

中间:

  • CONV:卷积计算层,线性乘积求和。
  • RELU:激励层,ReLU是激活函数的一种。
  • POOL:池化层,简言之,即取区域平均或最大。

右边:

  • FC:全连接层

卷积神经网络(CNN)中的局部感知和权重共享

CNN中的局部感知

在CNN中,滤波器filter(带着一组固定权重的神经元)对局部输入数据进行卷积计算。每计算完一个数据窗口内的局部数据后,数据窗口不断平移滑动,直到计算完所有数据。这个过程中,有这么几个参数:

  • 深度depth:神经元个数,决定输出的depth厚度。同时代表滤波器个数。
  • 步长stride:决定滑动多少步可以到边缘。
  • 填充值zero-padding:在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。
卷积神经网络(CNN)的相关概念

上图就是一个典型的局部感知的示例图。其中黄色部分的矩阵为滤波器,深度为1,步长为1,填充值为0。很明显我们可以看出,每次滤波器都是针对某一局部的数据窗口进行卷积,这就是所谓的CNN中的局部感知机制。

那为什么要局部感知呢?

打个比方,滤波器就像一双眼睛,人类视角有限,一眼望去,只能看到这世界的局部。如果一眼就看到全世界,你会累死,而且一下子接受全世界所有信息,你大脑接收不过来。当然,即便是看局部,针对局部里的信息人类双眼也是有偏重、偏好的。比如看美女,对脸、胸、腿是重点关注,所以这3个输入的权重相对较大。

CNN中的权重共享

那么权重共享又是什么呢?还是拿上图举例,滤波器在滑动的过程中,输入在变化,但中间滤波器(filter)的权重(即每个神经元连接数据窗口的权重)是固定不变的,这个权重不变即所谓的CNN中的 权重(参数)共享 机制。

再打个比方,某人环游全世界,所看到的信息在变,但采集信息的双眼不变。btw,不同人的双眼看同一个局部信息所感受到的不同,即一千个读者有一千个哈姆雷特,所以不同的滤波器就像不同的双眼,不同的人有着不同的反馈结果。

用一张动图诠释局部感知和权重共享

卷积神经网络(CNN)的相关概念

我在搜集资料的过程中发现了这张图,第一感觉非常的酷,如果理解了局部感知和权重共享那这张图就不难看懂了。

相信你也会有一个疑问,上图中的输出结果1具体是怎么计算得到的呢?接下来我们来分解下上述动图,详细解释下计算过程。

首先是第一张:

卷积神经网络(CNN)的相关概念

其实,计算过程类似wx + b,w对应滤波器Filter w0,x对应不同的数据窗口,b对应Bias b0,相当于滤波器Filter w0与一个个数据窗口相乘再求和后,最后加上Bias b0得到输出结果1,如下过程所示:

卷积神经网络(CNN)的相关概念
1x0 + 1x0 + -1x0 + -1x0 + 0x0 + 1x1+-1x0 + -1x0 + 0x1
卷积神经网络(CNN)的相关概念
-1x0 + 0x0 + -1x0 + 0x0 + 0x1 + -1x1 + 1x0 + -1x0 + 0x2
卷积神经网络(CNN)的相关概念
0x0 + 1x0 + 0x0 + 1x0 + 0x2 + 1x0 + 0x0 + -1x0 + 1x0

1(这里的1就是Bias b0)

=

1

然后滤波器Filter w0固定不变,数据窗口向右移动2步,继续做内积计算,得到0的输出结果

卷积神经网络(CNN)的相关概念

最后,换做另外一个不同的滤波器Filter w1、不同的偏置Bias b1,再跟图中最左边的数据窗口做卷积,可得到另外一个不同的输出。

卷积神经网络(CNN)的相关概念

池化

池化,简言之,即取区域平均或最大,其目的是为了减少特征图。池化操作对每个深度切片独立,规模一般为 2*2,相对于卷积层进行卷积运算,池化层进行的运算一般有以下几种:

  • 最大池化(Max Pooling)。取4个点的最大值。这是最常用的池化方法。
  • 均值池化(Mean Pooling)。取4个点的均值。
  • 高斯池化。借鉴高斯模糊的方法。不常用。
  • 可训练池化。训练函数 ff ,接受4个点为输入,出入1个点。不常用。

最常见的池化层是规模为2*2, 步幅为2,对输入的每个深度切片进行下采样。每个MAX操作对四个数进行,如下图所示:

卷积神经网络(CNN)的相关概念

上图所展示的是取区域最大,即上图左边部分中 左上角2x2的矩阵中6最大,右上角2x2的矩阵中8最大,左下角2x2的矩阵中3最大,右下角2x2的矩阵中4最大,所以得到上图右边部分的结果:6 8 3 4。均值池化类似。

  • 池化操作将保存 深度大小不变

  • 如果池化层的输入单元大小不是二的整数倍,一般采取边缘补零(zero-padding)的方式补成2的倍数,然后再池化。


以上所述就是小编给大家介绍的《卷积神经网络(CNN)的相关概念》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Practical JavaScript, DOM Scripting and Ajax Projects

Practical JavaScript, DOM Scripting and Ajax Projects

Frank Zammetti / Apress / April 16, 2007 / $44.99

http://www.amazon.com/exec/obidos/tg/detail/-/1590598164/ Book Description Practical JavaScript, DOM, and Ajax Projects is ideal for web developers already experienced in JavaScript who want to ......一起来看看 《Practical JavaScript, DOM Scripting and Ajax Projects》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

MD5 加密
MD5 加密

MD5 加密工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具