数学 – 任何人都可以告诉我为什么我们总是在机器学习中使用高斯分布?

栏目: 数据库 · 发布时间: 6年前

内容简介:你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.

我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果

如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

我已经在顶部绘制了具有相同均值和方差的正态分布,因此您可以了解匹配的接近程度.你可以看到我用来生成这些图 at this gist 的代码.

在典型的机器学习问题中,您将遇到来自许多不同来源的错误(例如测量错误,数据输入错误,分类错误,数据损坏……)并且认为所有这些错误的综合影响大致是不合理的正常(当然,你应该经常检查!)

这个问题的更实用的答案包括:

>因为它使数学更简单.正态分布的概率密度函数是二次方的指数.取对数(就像你经常做的那样,因为你想最大化对数似然)给你一个二次方.区分这个(找到最大值)可以得到一组线性方程,这些方程很容易通过分析求解.

>这很简单 – 整个分布用两个数字来描述,即均值和方差.

>大多数人都会熟悉您的代码/论文/报告.

这通常是一个很好的起点.如果您发现您的分配假设给您的表现不佳,那么也许您可以尝试不同的分布.但您应该首先考虑其他方法来改善模型的性能.

*技术要点 – 它需要有限的方差.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

浅薄

浅薄

[美]尼古拉斯·卡尔 / 刘纯毅 / 中信出版社 / 2015-11 / 49.00 元

互联网时代的飞速发展带来了各行各业效率的提升和生活的便利,但卡尔指出,当我们每天在翻看手机上的社交平台,阅读那些看似有趣和有深度的文章时,在我们尽情享受互联网慷慨施舍的过程中,我们正在渐渐丧失深度阅读和深度思考的能力。 互联网鼓励我们蜻蜓点水般地从多种信息来源中广泛采集碎片化的信息,其伦理规范就是工业主义,这是一套速度至上、效率至上的伦理,也是一套产量最优化、消费最优化的伦理——如此说来,互......一起来看看 《浅薄》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器