MXNet 实现 TensorFlow 训练模拟量化方法

栏目: 数据库 · 发布时间: 6年前

内容简介:Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.Tested on Ubuntu 14.041, compile MXNet with CUDA, then compile the scala-pkg,doc:

MXNET-Scala TrainQuantization

Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.

Setup

Tested on Ubuntu 14.04

Requirements

Build steps

1, compile MXNet with CUDA, then compile the scala-pkg,doc: https://github.com/dmlc/mxnet/tree/master/scala-package

2, under the Mxnet-Scala/TrainQuantization folder:

mkdir lib;
 ln -s $MXNET_HOME/scala-package/assembly/linux-x86_64-gpu/target/mxnet-full_2.11-linux-x86_64-gpu-1.5.0-SNAPSHOT.jar lib

3, run sbt and then compile the project

Train vgg on Cifar10

Using the script train_vgg16_cifar10.sh under the scripts folder to train vgg from scratch on Cifar10:

FINETUNE_MODEL_EPOCH=-1
FINETUNE_MODEL_PREFIX=$ROOT/models/

Or you can finetune with the provided pretrain model:

FINETUNE_MODEL_EPOCH=46
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035

I did not use any data augmentation and carefully tune the hyper-parameters during training, the best accuracy I got was 0.877, worse than the best accracy 0.93 reported on Cifar10.

Train vgg with fake quantization on Cifar10

Using the script train_quantize_vgg16_cifar10.sh under the scripts folder to train vgg with fake quantization on Cifar10, you must provide the pretrained model:

FINETUNE_MODEL_EPOCH=46
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035

If everything goes right, you should get almost the same accuray with pretrained model after serveral epoch.

Test vgg with simulated quantization on Cifar10

Using the script test_quantize_vgg16_cifar10.sh under the scripts folder to test pretrained fake quantization vgg with simulated quantization on Cifar10, you must provide the pretrained model:

FINETUNE_MODEL_EPOCH=57
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_quantize_vgg16_acc_0.877504

Warning

Currently there is memory leak some where in the code, but I can't figure out the reason. You will see the memory usage keep increasing when you run the tranining script. So remenber to stop the traning script when memory usage is too high, and you can resume the training process with saved model previously.

Reference

[1] Quantizing deep convolutional networks for efficient inference: A whitepaper. https://arxiv.org/pdf/1806.08342.pdf

[2] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. https://arxiv.org/pdf/1712.05877.pdf


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

鲜活的数据

鲜活的数据

[美] Nathan Yau / 向怡宁 / 人民邮电出版社 / 2012-10-1 / 69.00元

在生活中,数据几乎无处不在,任我们取用。然而,同样的数据给人的感觉可能会千差万别:或冰冷枯燥,让人望而生畏、百思不解其意;或生动有趣,让人一目了然、豁然开朗。为了达到后一种效果,我们需要采用一种特别的方式来展示数据,来解释、分析和应用它。这就是数据可视化技术。Nath an Yau是这一创新领域的先锋。在本书中,他根据数据可视化的工作流程,先后介绍了如何获取数据,将数据格式化,用可视化工具(如R)......一起来看看 《鲜活的数据》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器