why-what-how方式的机器学习总结之二

栏目: 数据库 · 发布时间: 6年前

内容简介:上面式子算的是z的后验概率,分子是样本xi属于zj的概率,分母是样本xi属于每个zi的概率之和,因为有了参数确定的条件所以分母是个边缘分布而不是等于1。M-step就是根据之前最大似然的结果把z的概率代入计算即可。这个过程实际上是固定z,然后最大化似然函数L(θ)求解对应的θ。EM算法能收敛,但可能会收敛到局部最大值,如果函数是凸函数才能保证收敛到全局最大值。

上面式子算的是z的后验概率,分子是样本xi属于zj的概率,分母是样本xi属于每个zi的概率之和,因为有了参数确定的条件所以分母是个边缘分布而不是等于1。

M-step就是根据之前最大似然的结果把z的概率代入计算即可。这个过程实际上是固定z,然后最大化似然函数L(θ)求解对应的θ。

EM算法能收敛,但可能会收敛到局部最大值,如果函数是凸函数才能保证收敛到全局最大值。

how

EM的推导过程有点长,这里只记录关键过程

why-what-how方式的机器学习总结之二

这个过程用了几个技巧

(1)分子分母同时增加了Q(z)项

(2)不等号这里用到了Jensen不等式

(3)第一步和最后一步都用到了期望的定义


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

当下的冲击

当下的冲击

道格拉斯•洛西科夫 (Douglas Rushkoff) / 孙浩 赵晖 / 中信出版社 / 2013-10-1 / 59.00元

这是一个并不符合人本能的社会…… 为什么我们不应该更注重生活的质量而非速度? 为什么我们不用面对面的交流代替冷冰冰电脑屏幕上的文字代码? 为什么我们不可以选择一个虽然有缺陷但有血有肉的人类社会,而非一个虽趋于完美但冷漠的数字世界? 在当下的冲击面前,你正变得越来越弱智:你没有了自己的独特空间,你过多地相信真人秀节目,你成了数字化产品的奴隶并得了数字化精神病,你的生物钟也被打......一起来看看 《当下的冲击》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码