人脸识别:方式、场景、设计思路

栏目: 编程工具 · 发布时间: 6年前

内容简介:本文笔者将与大家详细讲述:人脸识别的方式、人脸识别的场景以及人脸识别产品的设计思路。当下AI行业趋势在向商业化转变,自动驾驶的量产,城市、社区智慧化改造等可见一斑。AI产品经理,或许身处一个最好也是最坏的时代。

本文笔者将与大家详细讲述:人脸识别的方式、人脸识别的场景以及人脸识别产品的设计思路。

人脸识别:方式、场景、设计思路

当下AI行业趋势在向商业化转变,自动驾驶的量产,城市、社区智慧化改造等可见一斑。AI产品经理,或许身处一个最好也是最坏的时代。

今天主要聊聊人脸识别产品,通过本文你将了解:

  1. 人脸识别的方式
  2. 人脸识别的场景
  3. 人脸识别产品设计思路

一、人脸识别的方式

做人脸识别产品,首先要理解相关技术,才能明确人脸识别的设计边界——即能做什么。

概括来说,人脸识别实现了一件事:确定实际人脸与目标人脸的相似度,粗略可分为:人脸1:1比对、人脸1:N检测(M:N可看作M个1:N )。

  1. 人脸1:1比对:证明你是谁,如高铁站人证合一验证,支付宝人脸支付等。
  2. 人脸1:N检测:判断人脸库中是否存在满足相似度要求的数据,如商场会员检测、社区黑名单监控等。

以上两者的差异,在于目标人脸是否确定(通过其他方式获取到唯一身份信息)。在人脸1:1比对中,身份证、支付宝认证等,是已知账户/身份信息,只需核实实际人脸是否匹配。在人脸1:N检测中,目标人脸是不确定的,检测是为找到最相似的top N。

1:N的用户体验更优,因为是非配合,不像1:1,需要用户配合。但随着比对范围的扩大(个人了解目前N上限应该小于10万),1:N的准确率和速度不如1:1。

实际应用时,就需要依据实际环境仔细权衡,高铁站等,因为人流较大,更多采用1:1,而一般千人量级的社区,在准确率相当的情况下,1:N的体验会更好。

二、人脸识别的场景

人工智能本身没有任何意义,只有和具体场景结合才能够体现其价值。现阶段,绝大部分的人工智能还是弱人工智能,所谓人工智能赋能——即是将人从机械工作中解放出来。人脸识别作为人工智能的一个分支,遵循一样的规律。

其场景的寻找,依旧是需求调研/分析的工作,基本可以按照以下2个步骤进行:

  1. 梳理客户/用户业务的流程、多方利益相关人诉求等因素。
  2. 找到流程中机械工作&利于客户/用户目标的场景。

例如:社区改造中,如果客户是物管管理层,那么场景建设重心便是围绕其运营效率/成本、物业价值的外化等。在此基础上,寻找与此相关的机械工作,如保安三班倒值守,进出人员登记等。再如人脸支付,优化的机械工作是支付密码输入等。ToB和ToC业务,因其客户、用户属性存在不一致性,需要区分对待。

另外,如上文所述,受限于当前技术能力,无论什么场景,都需要基于准确率和体验的均衡来设计。达不到效果最好内部/种子用户多磨练,毕竟吸引客户/用户的机会可能只有一次。

三、人脸识别设计思路

人脸识别产品,具有产品的基本属性,设计有共通之处。产品设计相关的文章很多,但和主题相关度也不高,不赘述。本文主要聊除此之外,人脸识别产品需要考虑什么?

1.前端

  1. 人脸数据一般通过摄像头、摄像机、人脸抓拍机等设备获取,为了确保数据获取效率,可识别区域的引导设计尤为重要,如人脸框;
  2. 交互流对于已有流程,是否足够简单,即提升新体验、降低替换成本。如支付宝现在的刷脸付产品,需要刷脸、手机号验证两步,不见得比二维码更有效率。隐私性也是需要考虑的问题。
  3. 对既有流程的兼容。现在人脸识别的准确率,还没办法做到刷卡/指纹那么高的准确率,那么对于异常情况的处理就要更全面。比如:人脸识别为他人,识别一直不通过的提示及引导等。如果真的发生,也能确保用户/客户的流程继续走下去,别给客户/用户添麻烦。

2. 后端

  1. 光照:光照投射的阴影,会加强/减弱人脸特征。考虑建模进行补偿、消除。
  2. 人脸角度:垂直于图像平面的头部旋转会造成人脸信息缺失。考虑学习并记忆多角度视图。
  3. 遮挡:主要出现非配合人脸获取,这个问题貌似没有很好的解决办法……
  4. 年龄变化:如k12场景下,学生过2-3年面部变化。考虑设计动态更新人脸库
  5. 数据量增多出现性能瓶颈:人脸库增大,导致准确率的降低。考虑通过业务进行人脸库的切分,及准确率、召回率的权衡
  6. 夜景识别:可能导致非人脸判定为人脸,考虑干扰物图的过滤。

还有运动目标、丢帧、单帧人脸识别效率等等,人脸识别的后端处理,涉及到的方面十分繁杂,限于篇幅,此文仅简单列举。

切忌认为这只是开发层面的问题,优秀的产品应该主动分析。

所以,要做好系统日志的设计,详细记录识别情况,包括识别成功的记录和识别出错的原因,错误原因需要定期导出分析,寻求算法优化的切入点。

最后,系统上线仅是起点,而绝非终点。客户/用户永远会有你意料之外的反馈,多跟踪多交流,可能多走一步,就是产品的核心竞争力。

作者:Kevin ,个人公众号:Kevin回忆录。记录、分享各种复盘和思考。

本文由@Kevin 原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自Unsplash, 基于CC0协议。


以上所述就是小编给大家介绍的《人脸识别:方式、场景、设计思路》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Head First HTML and CSS

Head First HTML and CSS

Elisabeth Robson、Eric Freeman / O'Reilly Media / 2012-9-8 / USD 39.99

Tired of reading HTML books that only make sense after you're an expert? Then it's about time you picked up Head First HTML and really learned HTML. You want to learn HTML so you can finally create th......一起来看看 《Head First HTML and CSS》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具