利用AI炒股开挂!这届程序员真会玩

栏目: 数据库 · 发布时间: 6年前

内容简介:用深度学习预测股票价格想过去有些不明觉厉,但已经不是什么新鲜事了,今天猿妹和大家分享一个股票预测模型,收集了机器学习和股票预测的深度学习模型,包括交易机器人和(股票)模拟。想要准确预测股票市场是一项复杂的任务,因为有数百万个因素和先决条件会影响股票的走势,所以这个模型需要尽可能多的捕捉到这些先决条件,同时还需要作出几个重要的先决假设:1)市场不是100%随机的,2)历史重复,3)市场遵循人们的理性行为,4)市场是“完美的”。创建者以高盛公司为例子,预测高盛的股票走势,使用 2010 年 1 月 1 日至 2

用深度学习预测股票价格想过去有些不明觉厉,但已经不是什么新鲜事了,今天猿妹和大家分享一个股票预测模型,收集了机器学习和股票预测的深度学习模型,包括交易机器人和(股票)模拟。

想要准确预测股票市场是一项复杂的任务,因为有数百万个因素和先决条件会影响股票的走势,所以这个模型需要尽可能多的捕捉到这些先决条件,同时还需要作出几个重要的先决假设:1)市场不是100%随机的,2)历史重复,3)市场遵循人们的理性行为,4)市场是“完美的”。

创建者以高盛公司为例子,预测高盛的股票走势,使用 2010 年 1 月 1 日至 2018 年 12 月 31 日的日收盘价作为训练(七年)和测试(两年)数据。

为了创建所有神经网络,创建者使用MXNet及其高级API - Gluon,并在多个GPU上进行训练。整体架构如下:

利用AI炒股开挂!这届 <a href='https://www.codercto.com'>程序员</a> 真会玩

GitHub上还给出了详细的教程介绍每一个步骤,创建者表示最困难的部分是GAN,想要成功训练GAN最难的部分就是获得正确的超参数集。出于这个原因,创建者使用贝叶斯优化(带有高斯过程的贝叶斯优化)和强化学习(RL)来决定何时以及如何改变GAN的超参数。在创建强化学习时,也利用到一些最新的技术,例如Rainbow和PPO。

除了股票的历史交易数据和技术指标,创建者还NLP 中的 BERT 来创建情绪分析模型(作为基本面分析的来源),傅立叶变换用于提取整体趋势方向......只为捕获尽可能多的关于股票的信息,模式,依赖关系等。众所周知,数据越多越好。

集体过程我们就不过多赘述了,直接看结果:

绘制第一次训练之后的结果

利用AI炒股开挂!这届程序员真会玩

绘制 50 次训练后的结果

利用AI炒股开挂!这届程序员真会玩

绘制 200 次训练后的结果

利用AI炒股开挂!这届程序员真会玩

RL 运行了 10 eposide ,本文定义一个 eposide 是 GAN 完整训练 200 次后,下图是得到的最终的结果

利用AI炒股开挂!这届程序员真会玩

对整个教程感兴趣的,可以到GitHub一探究竟。至于准确率如何,试过就知道了

利用AI炒股开挂!这届程序员真会玩

目前,该项目已经获得 863 个Star,378 个Fork(GitHub地址:https://github.com/borisbanushev/stockpredictionai)


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

离散数学及其应用(原书第6版·本科教学版)

离散数学及其应用(原书第6版·本科教学版)

[美] Kenneth H. Rosen / 袁崇义、屈婉玲、张桂芸 / 机械工业出版社 / 2011-11 / 49.00元

《离散数学及其应用》一书是介绍离散数学理论和方法的经典教材,已经成为采用率最高的离散数学教材,仅在美国就被600多所高校用作教材,并获得了极大的成功。第6版在前5版的基础上做了大量的改进,使其成为更有效的教学工具。 本书基于该书第6版进行改编,保留了国内离散数学课程涉及的基本内容,更加适合作为国内高校计算机及相关专业本科生的离散数学课程教材。本书的具体改编情况如下: · 补充了关于范式......一起来看看 《离散数学及其应用(原书第6版·本科教学版)》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具