Gilbert Strang教授的MIT公开课:数据分析、信号处理和机器学习中的矩阵方法

栏目: 数据库 · 发布时间: 6年前

内容简介:Linear algebra concepts are key for understanding and creating machine learning algorithms, especially as applied to deep learning and neural networks. This course reviews linear algebra with applications to probability and statistics and optimization–and

线性代数的相关课程里,我最推崇的还是MIT Gilbert Strang教授的线性代数课程,关于这方面资源的介绍,可以参考我们之前那篇文章: 那些值得推荐和收藏的线性代数学习资源

最近发现他依然活跃在教学一线,在MIT 2018春季学期开设了一门的相关课程: Matrix Methods in Data Analysis, Signal Processing, and Machine Learning

Linear algebra concepts are key for understanding and creating machine learning algorithms, especially as applied to deep learning and neural networks. This course reviews linear algebra with applications to probability and statistics and optimization–and above all a full explanation of deep learning.

这门课程可以翻译为“数据分析、信号处理和机器学习中的矩阵方法”,课程主页的配图特别能说明问题:

Gilbert Strang教授的MIT公开课:数据分析、信号处理和机器学习中的矩阵方法

以下是该课程资源链接,感兴趣的同学可以参考:

课程主页:

https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/

课程官方视频:

https://www.youtube.com/playlist?list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k

爱可可老师B站搬运链接:

https://www.bilibili.com/video/av53055190/

关于Gilbert Strang教授:

吉尔伯特-斯特朗:1934年11月27日出生,是美国享有盛誉的数学家,在有限元理论、变分法、小波分析及线性代数方面均有所建树。他对教育的贡献尤为 卓著,包括所著有的七部经典数学教材及一部专著。斯特朗自1962年至今担任麻省理工学院教授,其所授课程《线性代数导论》、《计算科学与工程》均在 MIT开放课程软件(MIT OpenCourseWare)中收录,获得广泛好评。


以上所述就是小编给大家介绍的《Gilbert Strang教授的MIT公开课:数据分析、信号处理和机器学习中的矩阵方法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

一目了然

一目了然

Robert Hoekman, Jr. / 段江玲 / 机械工业出版社华章公司 / 2012-3-19 / 59.00元

可用性或易用性是软件或Web设计师的重要设计目标之一。本书深入阐述了如何设计出简单易用的基于Web的软件,以帮助读者理解、掌握显性设计的精髓。作者从软件开发初期谈起,一直到软件设计后期,分析诸多案例并论证了自己的见解或设计原则。本书在第1版的基础上进行了重大改进,尤其是在设计思想上,作者在本书中谈到“以用户为中心的设计”、“以任务为中心的设计”以及“以情景为中心的设计”的理念。这种设计理念也将更直......一起来看看 《一目了然》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

MD5 加密
MD5 加密

MD5 加密工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具