Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...

栏目: IT技术 · 发布时间: 5年前

内容简介:I recently installed a surveillance system equipped with four cameras and a Network Video Recorder (NVR) around my house. Unfortunately, almost all false alarms were triggered by moving plants or tree shadows or squirrels. None of these alarms can be filte

Practical Deep Learning from Jupyter to Serverless Web Application

Jun 14 ·5min read

I recently installed a surveillance system equipped with four cameras and a Network Video Recorder (NVR) around my house. Unfortunately, almost all false alarms were triggered by moving plants or tree shadows or squirrels. None of these alarms can be filtered out by traditional image processing capabilities coming with the system.

Like most deep learning practitioners, I know object detection programs can filter out these false alarms. But they either require an expensive commercial contract or a computer on my home network. Since I want to keep the cost low, having a computer seems the right choice. However, it’s still a rather large initial capital investment plus the recurring 24/7 electricity cost. The computer also requires setup, maintenance, and shelf space. Its fan noise or heat dissipation from the closet is another nonsense I prefer not to deal with at home.

Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...

Most false alarms are simply trigged by moving tree shade and plants. These false alarms cannot be filtered out using traditional image processing techniques such as adjusting contrast threshold or setting active zones

Upon further research, I found out using serverless web APIs is the best solution. It not only gives fast response but also charges a very small fee based on usages. I also want to optimize the deep learning algorithm by myself or to reconfigure the implementation for advanced deep learning applications. I have thus chosen MXNet running on AWS. The combination allows easy deep learning code development using Jupyter, optimized library performance, abundant pre-trained models, and the powerful open cloud infrastructure.


以上所述就是小编给大家介绍的《Adding Cloud-Based Deep-Learning Object Detection Capability to Home Surveillance Camera Sy...》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Pragmatic Programmer

The Pragmatic Programmer

Andrew Hunt、David Thomas / Addison-Wesley Professional / 1999-10-30 / USD 49.99

本书直击编程陈地,穿过了软件开发中日益增长的规范和技术藩篱,对核心过程进行了审视――即根据需求,创建用户乐于接受的、可工作和易维护的代码。本书包含的内容从个人责任到职业发展,直至保持代码灵活和易于改编重用的架构技术。从本书中将学到防止软件变质、消除复制知识的陷阱、编写灵活、动态和易适应的代码、避免出现相同的设计、用契约、断言和异常对代码进行防护等内容。一起来看看 《The Pragmatic Programmer》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换