PyPy: A Faster Python Implementation

栏目: IT技术 · 发布时间: 5年前

PyPy: A Faster Python Implementation

A fast ,compliant alternative implementation of Python

Get Started : Download and install

What is PyPy : Features

Documentation (external link)

On average, PyPy is 4.4 times faster than CPython

PyPy: A Faster Python Implementation

PyPy trunk (with JIT) benchmark times normalized to CPython. Smaller is better. Based on the geometric average of all benchmarks

"If you want your code to run faster,
you should probably just use PyPy."
-- Guido van Rossum (creator of Python)

Advantages and distinct Features

  • Speed:thanks to its Just-in-Time compiler, Python programs often runfaster on PyPy. (What is a JIT compiler?)

  • Memory usage:memory-hungry Python programs (several hundreds of MBs or more) might end up taking less space than they do in CPython.

  • Compatibility:PyPy ishighly compatible with existing python code. It supports cffi , cppyy , and can run popular python libraries like twisted and django .

  • Stackless:PyPy comes by default with support forstackless mode, providing micro-threads for massive concurrency.

  • As well as otherfeatures.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

生物序列分析

生物序列分析

Richard Durbin、Sean Eddy、Anders Krogh [等] / 王俊、郭一然、单杲 / 科学出版社 / 2010-8 / 60.00元

生物序列分析,ISBN:9787030284433,作者:(英)Durbin,R 等编著一起来看看 《生物序列分析》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换