利用Keras长短期记忆(LSTM)模型预测股票价格

栏目: 数据库 · 发布时间: 5年前

内容简介:LSTMs在序列预测问题中非常强大,因为它们能够存储过去的信息。这在我们的案例中很重要,因为股票的前一个价格对于预测其未来的价格是至关重要的。编者按:本教程演示了如何开始使用LSTM模型预测时间序列。股票市场数据是一个很好的选择,因为它是相当常规的和广泛地提供给每个人。请不要把这当作理财建议,也不要用它来做你自己的交易。

LSTMs在序列预测问题中非常强大,因为它们能够存储过去的信息。这在我们的案例中很重要,因为股票的前一个价格对于预测其未来的价格是至关重要的。

利用Keras长短期记忆(LSTM)模型预测股票价格

编者按:本教程演示了如何开始使用LSTM模型预测时间序列。股票市场数据是一个很好的选择,因为它是相当常规的和广泛地提供给每个人。请不要把这当作理财建议,也不要用它来做你自己的交易。

在本教程中,我们将构建一个 Python 深度学习模型,用于预测股票价格的未来行为。我们假设读者熟悉Python中的深度学习概念,特别是LSTM。

虽然预测股票的实际价格是一个上坡路,但是我们可以建立一个模型来预测股票的价格是涨是跌。本教程使用的数据和notebook可以在 这里 找到。需要注意的是,影响股价的因素总是存在的,比如政治氛围和市场。然而,在本教程中,我们不会关注这些因素。

简介

LSTMs在序列预测问题中非常强大,因为它们能够存储过去的信息。这在我们的案例中很重要,因为股票的前一个价格对于预测其未来的价格是至关重要的。

我们将导入用于科学计算的 NumPy 、用于绘制图形的 Matplotlib 和用于加载和操作数据集的 Pandas

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

加载数据集

下一步是加载我们的训练数据集,并选择我们将在建模中使用的Open和High列。

dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv')
training_set = dataset_train.iloc[:, 1:2].values

我们检查数据集的头部,以便让我们对正在使用的数据集有一个大致的了解。

dataset_train.head()

利用Keras长短期记忆(LSTM)模型预测股票价格

某只股票在特定交易日的开盘价是是Open列,收盘价是Close列。最高和最低价分别是High列和Low列。

特征缩放

从以前使用深度学习模型的经验中,我们知道我们必须缩放数据以获得最佳性能。在我们的例子中,我们将使用Scikit- Learn的MinMaxScaler,并将数据集缩放到0到1之间的数字。

from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
training_set_scaled = sc.fit_transform(training_set)

使用Timesteps创建数据

LSTMs期望我们的数据具有特定的格式,通常是一个3D数组。我们首先在60个时间步骤中创建数据,然后使用NumPy将其转换为数组。接下来,我们将数据转换为具有X_train示例、60个时间戳和每个步骤一个特征的3D维度数组。

X_train = []
y_train = []
for i in range(60, 2035):
    X_train.append(training_set_scaled[i-60:i, 0])
    y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

构建LSTM

为了构建LSTM,我们需要从Keras中导入几个模块:

  • Sequential 用于初始化神经网络
  • Dense 用于添加密集连接的神经网络层
  • LSTM 用于添加长短期内存层
  • Dropout 用于添加防止过拟合的dropout层
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout

我们添加LSTM层,然后添加一些Dropout层以防止过拟合。我们使用以下参数添加LSTM层:

50个单元,也就是输出空间的维度 return_sequence =True,它决定是否返回输出序列中的最后一个输出,还是返回完整的序列 input_shape作为训练集的shape

在定义Dropout层时,我们指定0.2,这意味着20%的层将被删除。然后,我们添加指定1个单元的输出的Dense层。在此之后,我们使用流行的adam优化器编译模型,并将损失设置为mean_squarred_error。这会计算平方误差的均值。接下来,我们将模型设置为在批大小为32的100个epochs上运行。请记住,根据您的计算机的规格,这可能需要几分钟来完成运行。

regressor = Sequential()

regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))

regressor.add(Dense(units = 1))

regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')

regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)

使用测试集预测未来的股票

首先,我们需要导入用于预测的测试集。

dataset_test = pd.read_csv('tatatest.csv')
real_stock_price = dataset_test.iloc[:, 1:2].values

为了预测未来的股票价格,我们需要在加载测试集之后做一些事情:

  1. 在0轴上合并训练集和测试集。
  2. 将时间步长设置为60(如前所述)
  3. 使用MinMaxScaler转换新数据集
  4. 如前所述,重新塑造数据集

在做出预测之后,我们使用inverse_transform以正常可读的格式返回股票价格。

dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 76):
    X_test.append(inputs[i-60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)

可视化结果

最后,我们使用Matplotlib将预测股价和实际股价的结果可视化。

plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price')
plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price')
plt.title('TATA Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('TATA Stock Price')
plt.legend()
plt.show()

利用Keras长短期记忆(LSTM)模型预测股票价格

从图中我们可以看到,股票的实际价格上升了,而我们的模型也预测了股票的价格会上升。这清楚地显示了LSTMs在分析时间序列和顺序数据方面的强大功能。

总结

有一些其他的技术来预测股票价格,如移动平均线,线性回归,k近邻,ARIMA和Prophet。这些技术可以单独测试,并与Keras LSTM进行性能比较。如果你想更多地了解Keras和深度学习,你可以在 这里 找到我的文章。

作者:Derrick Mwiti 原文链接: https://heartbeat.fritz.ai/using-a-keras-long-shortterm-memory-lstm-model-to-predict-stock-prices-a08c9f69aa74

版权声明: 作者保留权利。文章为作者独立观点,不代表数据人网立场。严禁修改,转载请注明原文链接:http://shujuren.org/article/782.html

数据人网: 数据人学习,交流和分享的平台,诚邀您创造和分享数据知识,共建和共享数据智库。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算几何

计算几何

周培德 / 2008-7 / 69.00元

《计算几何:算法设计与分析(第3版)》系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括:预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分、算法的运动规划、几何拓扑网络设计、随机几何算法与并行几何算法等。一起来看看 《计算几何》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具