谷歌开源 TensorFlow 的简化库 JAX

栏目: 数据库 · 发布时间: 6年前

内容简介:谷歌开源了一个 TensorFlow 的简化库 JAX。JAX 结合了 Autograd 和 XLA,专门用于高性能机器学习研究。

谷歌开源了一个 TensorFlow 的简化库 JAX。

谷歌开源 TensorFlow 的简化库 JAX

JAX 结合了 Autograd 和 XLA,专门用于高性能机器学习研究。

凭借 Autograd,JAX 可以求导循环、分支、递归和闭包函数,并且它可以进行三阶求导。通过 grad,它支持自动模式反向求导(反向传播)和正向求导,且二者可以任何顺序任意组合。

得力于 XLA,可以在 GPU 和 TPU 上编译和运行 NumPy 程序。默认情况下,编译发生在底层,库调用实时编译和执行。但是 JAX 还允许使用单一函数 API jit 将 Python 函数及时编译为 XLA 优化的内核。编译和自动求导可以任意组合,因此可以在 Python 环境下实现复杂的算法并获得最大的性能。

demo:

import jax.numpy as np
from jax import grad, jit, vmap
from functools import partial

def predict(params, inputs):
  for W, b in params:
    outputs = np.dot(inputs, W) + b
    inputs = np.tanh(outputs)
  return outputs

def logprob_fun(params, inputs, targets):
  preds = predict(params, inputs)
  return np.sum((preds - targets)**2)

grad_fun = jit(grad(logprob_fun))  # compiled gradient evaluation function
perex_grads = jit(vmap(grad_fun, in_axes=(None, 0, 0)))  # fast per-example grads

更深入地看,JAX 实际上是一个可扩展的可组合函数转换系统,grad 和 jit 都是这种转换的实例。

项目地址:https://github.com/google/JAX


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python Machine Learning

Python Machine Learning

Sebastian Raschka / Packt Publishing - ebooks Account / 2015-9 / USD 44.99

About This Book Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and opti......一起来看看 《Python Machine Learning》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

MD5 加密
MD5 加密

MD5 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具