线性回归背后的数学

栏目: 数据库 · 发布时间: 7年前

内容简介:线性回归背后的数学

本文是YouTube上视频 How to Do Linear Regression the Right Way 笔记

假设我们有一堆数据,并且他们是线性相关的,那我们怎么找出最合适的那条直线呢?

此处关键是定义什么是最合适?可以通过每个点到直线的距离来定义整个合适,如图:

线性回归背后的数学

在上面的过程中,直线 y=mx+b 中m和b不管变化,从而找到最合适的直线,这个判断的依据就是:

线性回归背后的数学

上面公式的含义是:假设点是(x,y),那相同x的直线上的点就是:(x,mx+b),而这两者之间的距离就是(y-(mx+b)),为了防止出现负数,因此我们就计算了平方,有了这个衡量的标准后,我们就可以画出上面公式的一个图了:

线性回归背后的数学

此处画出来是一个立体图,我们要找的一个最佳的直线,对应到图中其实就是一个最低点,更形象的例子是:

线性回归背后的数学

如果我们此时放一个弹珠到碗里,最终弹珠停下来的点就是我们要找的最佳点,现在我们没有弹珠,我们要怎么找到这个最佳点呢?这就要讲到偏导数(partial derivatives)的概念了,以前大学里学偏导数的是时候一直不明白为什么叫偏导,直到最近看到英文:partial derivatives才明白,我们来看图:

线性回归背后的数学

图中的函数f是一个表面,如果我们固定住y,则是一个曲线,如图中绿色的线,此时我们在计算点(a,b,f(a,b))在绿色线上的斜率,就可以得到沿着x方向的斜率了,同样的我们固定x,就可以得到y方向的斜率,这样子解释,英文partial derivatives就很形象了,即计算的部分的斜率,合在一起才是曲面上这个点相切的一个平面。

由此我们就有了偏导数:

线性回归背后的数学

根据上面的这些我们就有了最后的代码: https://github.com/llSourcell/linear_regression_live

疑问:

一些视频的中的词汇记录:

back of your hand:了如指掌

gradient descent:梯度下降

partial derivatives:偏导数

calculus:微积分

correlation:相关性

intercept:截断

slope:斜率

Convergence:收敛

slope formula:斜率公式

magnitude:大小

with respect to:关于

tangent:切线

好书推荐:Machine Learning and Probabilistic Approach


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

High Performance JavaScript

High Performance JavaScript

Nicholas C. Zakas / O'Reilly Media / 2010-4-2 / USD 34.99

If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your ......一起来看看 《High Performance JavaScript》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具