ResNet图像识别与tensorflow实现

栏目: 编程工具 · 发布时间: 5年前

内容简介:采用tensorflow对ResNet模型进行复现,模型的代码如下:最终,对ResNet的优缺点总结如下:

1. 引言

前面我们介绍了VGGNet在图像识别中的应用,在VGGNet中,作者提出随着CNN网络层数的加深,模型的效果会进一步得到提升,但是在这篇论文提出来之后,有学者发现,随着层数的加深,当深度达到一定数值之后,模型的准确率不仅没有提升,反而下降了,如图所示:

ResNet图像识别与tensorflow实现

最开始有学者以为是梯度消失或爆炸的问题导致的,但是这个问题可以被Batch Normalization解决,并且加了Batch Normalization后依然出现类似的问题,另外,该现象也不是因为过拟合,因为如果是过拟合的话,模型在训练集上的准确率应该不会下降才对,因此,这里面肯定是因为模型中其他潜在的原因导致的。这个问题在2015年时被何凯明大神发现了,并且提出了一种新型的模型结构——ResNet,ResNet的提出可以说是图像识别任务中的里程碑,下面我们将对该模型进行具体介绍,并用tensorflow来实现它。

2. ResNet模型介绍

2.1 ResNet block介绍

H ( x ) \mathcal{H}(\mathrm{x}) 为网络中几个堆叠的层所要拟合的潜在映射,其中, x x 是这几层中第一层的输入,那么,在VGGNet等传统的网络中,几个堆叠的层所要拟合的目标其实就是 H ( x ) \mathcal{H}(\mathrm{x}) ,而ResNet则只要求这几个层拟合目标为 F ( x ) : = H ( x ) x \mathcal{F}(\mathrm{x}) :=\mathcal{H}(\mathrm{x})-\mathrm{x} ,即拟合该层输入与输出的残差,因此ResNet也被称为 残差网络 。其结构如下图所示,其实就是在每个block的最后一层relu层之前将输出与输入进行相加,这种结构也被称为“shortcut connections”,用公式表达如下:

y = F ( x , { W i } ) + x \mathrm{y}=\mathcal{F}\left(\mathrm{x},\left\{W_{i}\right\}\right)+\mathrm{x}

其中, x x y y 分别表示一个block的输入和输出, F ( x , { W i } ) \mathcal{F}\left(\mathrm{x},\left\{W_{i}\right\}\right) 表示当前block所要拟合的残差映射, F = W 2 σ ( W 1 x ) \mathcal{F}=W_{2} \sigma\left(W_{1} \mathrm{x}\right) ,其中 W 1 W_{1} W 2 W_{2} 为当前block的参数矩阵, σ \sigma 表示relu激活函数,在该计算之后,则是残差连接,残差连接后再经过一层relu激活函数得到该block的输出。虽然最终block的输出与VGGNet等网络类似,但是却降低了模型拟合的难度。

ResNet图像识别与tensorflow实现

不过,上面这种残差连接方式要求 F ( x ) \mathcal{F}(\mathrm{x}) x x 之间的维度必须完全相同,当两者的维度不一致时,可以通过一个线性变换将 x x 的维度转变为与 F ( x ) \mathcal{F}(\mathrm{x}) 的维度一致,即:

y = F ( x , { W i } ) + W s x \mathrm{y}=\mathcal{F}\left(\mathrm{x},\left\{W_{i}\right\}\right)+W_{s} \mathrm{x}

另外,上面介绍的 F ( x ) \mathcal{F}(\mathrm{x}) 函数其实表示的是全连接网络,那么在图像中,我们也可以将其替换为卷积神经网络,并且最终的残差连接是直接对每个feature map进行对应相加。在每个block里面,层数也是可以灵活设置的,可以是两层、三层甚至多层,作者在论文中主要采用的是两种block结构,如下图所示,右边的三层结构也被称为“bottleneck”,采用这种三层的结构可以有效地提高模型的计算速度。

ResNet图像识别与tensorflow实现

2.2 ResNet模型结构介绍

为了与传统的深层卷积神经网络对比,作者选择了经典的VGGNet进行对比,但是作者做了一些细微的修改,比如将中间的部分max-pooling改为卷积层,只是步伐改为2,另外,第一层卷积层采用 7 × 7 7 \times 7 的卷积核。对于网络的层数,作者尝试了多种,用2层的block搭建了18、34层的模型,用3层的block搭建了50、101、152层的模型。模型的结构如下图所示,最右侧是ResNet,模型侧边每个实线表示一个block,并且尺度不变,每个虚线也表示一个block,但是对应的feature_map尺度减半,通道翻倍,当尺度发生变化时,作者主要有两种措施实现残差连接,一种是直接采用zero-padding操作使得 F ( x ) \mathcal{F}(\mathrm{x}) x x 尺度一致,另一种是采用 1 × 1 1 \times 1 的卷积操作使得 x x 的维度和 F ( x ) \mathcal{F}(\mathrm{x}) 一致。

ResNet图像识别与tensorflow实现 ResNet图像识别与tensorflow实现

作者通过在多个数据上进行实验,发现ResNet确实解决了随着深度加深,模型准确率下降的问题,如下图所示:

ResNet图像识别与tensorflow实现

3. ResNet模型的tensorflow实现

采用tensorflow对ResNet模型进行复现,模型的代码如下:

import os
import config
import random
import numpy as np
import tensorflow as tf
from config import resnet_config
from data_loader import DataLoader
from eval.evaluate import accuracy


class ResNet(object):
   def __init__(self,
                depth=resnet_config.depth,
                height=config.height,
                width=config.width,
                channel=config.channel,
                num_classes=config.num_classes,
                learning_rate=resnet_config.learning_rate,
                learning_decay_rate=resnet_config.learning_decay_rate,
                learning_decay_steps=resnet_config.learning_decay_steps,
                epoch=resnet_config.epoch,
                batch_size=resnet_config.batch_size,
                model_path=resnet_config.model_path,
                summary_path=resnet_config.summary_path):
       """

       :param depth:
       """
       self.depth = depth
       self.height = height
       self.width = width
       self.channel = channel
       self.learning_rate = learning_rate
       self.learning_decay_rate = learning_decay_rate
       self.learning_decay_steps = learning_decay_steps
       self.epoch = epoch
       self.batch_size = batch_size
       self.num_classes = num_classes
       self.model_path = model_path
       self.summary_path = summary_path
       self.num_block_dict = {18: [2, 2, 2, 2],
                              34: [3, 4, 6, 3],
                              50: [3, 4, 6, 3],
                              101: [3, 4, 23, 3]}
       self.bottleneck_dict = {18: False,
                               34: False,
                               50: True,
                               101: True}
       self.filter_out = [64, 128, 256, 512]
       self.filter_out_last_layer = [256, 512, 1024, 2048]
       self.conv_out_depth = self.filter_out[-1] if self.depth < 50 else self.filter_out_last_layer[-1]
       assert self.depth in self.num_block_dict, 'depth should be in [18,34,50,101]'
       self.num_block = self.num_block_dict[self.depth]
       self.bottleneck = self.bottleneck_dict[self.depth]
       self.input_x = tf.placeholder(tf.float32, shape=[None, self.height, self.width, self.channel], name='input_x')
       self.input_y = tf.placeholder(tf.float32, shape=[None, self.num_classes], name='input_y')
       self.prediction = None
       self.loss = None
       self.acc = None
       self.global_step = None
       self.data_loader = DataLoader()
       self.model()

   def model(self):
       # first convolution layers
       x = self.conv(x=self.input_x, k_size=7, filters_out=64, strides=2, activation=True, name='First_Conv')
       x = tf.layers.max_pooling2d(x, pool_size=[3, 3], strides=2, padding='same', name='max_pool')
       x = self.stack_block(x)
       x = tf.layers.average_pooling2d(x, pool_size=x.get_shape()[1:3], strides=1, name='average_pool')
       x = tf.reshape(x, [-1, 1 * 1 * self.conv_out_depth])
       logits = tf.layers.dense(inputs=x, units=self.num_classes,
                                kernel_initializer=tf.truncated_normal_initializer(stddev=0.1))
       # 预测值
       self.prediction = tf.argmax(logits)
       # 计算准确率
       self.acc = accuracy(logits, self.input_y)
       # 损失值
       self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=self.input_y))
       # 全局步数
       self.global_step = tf.train.get_or_create_global_step()
       # 递减学习率
       learning_rate = tf.train.exponential_decay(learning_rate=self.learning_rate,
                                                  global_step=self.global_step,
                                                  decay_rate=self.learning_decay_rate,
                                                  decay_steps=self.learning_decay_steps,
                                                  staircase=True)
       self.optimize = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)

   def stack_block(self, input_x):
       for stack in range(4):
           stack_strides = 1 if stack == 0 else 2
           stack_name = 'stack_%s' % stack
           with tf.name_scope(stack_name):
               for block in range(self.num_block[stack]):
                   shortcut = input_x
                   block_strides = stack_strides if block == 0 else 1
                   block_name = stack_name + '_block_%s' % block
                   with tf.name_scope(block_name):
                       if self.bottleneck:
                           for layer in range(3):
                               with tf.name_scope(block_name + '_layer_%s' % layer):
                                   filters = self.filter_out[stack] if layer < 2 else self.filter_out_last_layer[stack]
                                   k_size = 3 if layer == 1 else 1
                                   layer_strides = block_strides if layer < 1 else 1
                                   activation = True if layer < 2 else False
                                   layer_name = block_name + '_conv_%s' % layer
                                   input_x = self.conv(x=input_x, filters_out=filters, k_size=k_size,
                                                       strides=layer_strides, activation=activation, name=layer_name)
                       else:
                           for layer in range(2):
                               with tf.name_scope(block_name + '_layer_%s' % layer):
                                   filters = self.filter_out[stack]
                                   k_size = 3
                                   layer_strides = block_strides if layer < 1 else 1
                                   activation = True if layer < 1 else False
                                   layer_name = block_name + '_conv_%s' % layer
                                   input_x = self.conv(x=input_x, filters_out=filters, k_size=k_size,
                                                       strides=layer_strides, activation=activation, name=layer_name)
                   shortcut_depth = shortcut.get_shape()[-1]
                   input_x_depth = input_x.get_shape()[-1]
                   with tf.name_scope('shortcut_connect'):
                       if shortcut_depth != input_x_depth:
                           connect_k_size = 1
                           connect_strides = block_strides
                           connect_filter = filters
                           shortcut_name = block_name + '_shortcut'
                           shortcut = self.conv(x=shortcut, filters_out=connect_filter, k_size=connect_k_size,
                                                strides=connect_strides, activation=False, name=shortcut_name)
                       input_x = tf.nn.relu(shortcut + input_x)

       return input_x

   def conv(self, x, k_size, filters_out, strides, activation, name):
       x = tf.layers.conv2d(x, filters=filters_out, kernel_size=k_size, strides=strides, padding='same', name=name)
       x = tf.layers.batch_normalization(x, name=name + '_BN')
       if activation:
           x = tf.nn.relu(x)
       return x

   def fit(self, train_id_list, valid_img, valid_label):
       """
       training model
       :return:
       """
       # 模型存储路径初始化
       if not os.path.exists(self.model_path):
           os.makedirs(self.model_path)
       if not os.path.exists(self.summary_path):
           os.makedirs(self.summary_path)

       # train_steps初始化
       train_steps = 0
       best_valid_acc = 0.0

       # summary初始化
       tf.summary.scalar('loss', self.loss)
       merged = tf.summary.merge_all()

       # session初始化
       sess = tf.Session()
       writer = tf.summary.FileWriter(self.summary_path, sess.graph)
       saver = tf.train.Saver(max_to_keep=10)
       sess.run(tf.global_variables_initializer())
       for epoch in range(self.epoch):
           shuffle_id_list = random.sample(train_id_list.tolist(), len(train_id_list))
           batch_num = int(np.ceil(len(shuffle_id_list) / self.batch_size))
           train_id_batch = np.array_split(shuffle_id_list, batch_num)
           for i in range(batch_num):
               this_batch = train_id_batch[i]
               batch_img, batch_label = self.data_loader.get_batch_data(this_batch)
               train_steps += 1
               feed_dict = {self.input_x: batch_img, self.input_y: batch_label}
               _, train_loss, train_acc = sess.run([self.optimize, self.loss, self.acc], feed_dict=feed_dict)
               if train_steps % 1 == 0:
                   val_loss, val_acc = sess.run([self.loss, self.acc],
                                                feed_dict={self.input_x: valid_img, self.input_y: valid_label})
                   msg = 'epoch:%s | steps:%s | train_loss:%.4f | val_loss:%.4f | train_acc:%.4f | val_acc:%.4f' % (
                       epoch, train_steps, train_loss, val_loss, train_acc, val_acc)
                   print(msg)
                   summary = sess.run(merged, feed_dict={self.input_x: valid_img, self.input_y: valid_label})
                   writer.add_summary(summary, global_step=train_steps)
                   if val_acc >= best_valid_acc:
                       best_valid_acc = val_acc
                       saver.save(sess, save_path=self.model_path, global_step=train_steps)

       sess.close()

   def predict(self, x):
       """
       predicting
       :param x:
       :return:
       """
       sess = tf.Session()
       sess.run(tf.global_variables_initializer())
       saver = tf.train.Saver(tf.global_variables())
       ckpt = tf.train.get_checkpoint_state(self.model_path)
       saver.restore(sess, ckpt.model_checkpoint_path)

       prediction = sess.run(self.prediction, feed_dict={self.input_x: x})
       prediction = np.bincount(prediction)
       prediction = np.argmax(prediction)
       return prediction

4. 总结

最终,对ResNet的优缺点总结如下:

  • ResNet解决了准确率随着深度加深而下降的问题,收敛速度比VGGNet更快。
  • 与VGGNet相比,模型的深度可以更深,复杂度更低,参数量更少。

以上所述就是小编给大家介绍的《ResNet图像识别与tensorflow实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

无懈可击的Web设计

无懈可击的Web设计

【美】Dan Cederholm / 马跃 / 清华大学出版社 / 2012-5 / 39.00元

本书将指导您采用标准设计策略来满足以各种方式浏览网页的各类用户的需要。每章首先列举一个沿用传统HTML技术的实例,然后指出该实例的局限性,并利用XHTML和CSS对其进行重构。从中您将学会如何用简洁高效的HTML标记和CSS来取代臃肿的代码,从而创建加载速度极快、能供所有用户使用的网站。本书最后将前面各章讨论的所有页面组件珠联璧合地结合在一起,制作了一个页面模板。这一版全面润色和更新了上一版本,介......一起来看看 《无懈可击的Web设计》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

html转js在线工具
html转js在线工具

html转js在线工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试