决策树相关算法——XGBoost原理分析及实例实现(二)

栏目: 编程工具 · 发布时间: 4年前

内容简介:本篇博客主要记录的是XGBoost在构建决策树结构时,知道如何评定划分点的好坏的情况下,如何遍历查找出该树结构的切分点。前篇博客问题1.如何根据特征分布的分位数挑选出候选点集??问题2.

本篇博客主要记录的是XGBoost在构建决策树结构时,知道如何评定划分点的好坏的情况下,如何遍历查找出该树结构的切分点。前篇博客 决策树相关算法——XGBoost原理分析及实例实现(一) 介绍的是贪心查找算法,逐步遍历特征和特征取值,比较切分前后的平方误差的大小,获得最佳切分点。本篇主要介绍的是近视查找算法和稀疏感知的划分查找。

2要说的话

我们知道决策树中的ID3算法和C4.5或者是CART分类回归树的构造过程中都是有一个切分评价标准,ID3进行特征选择的是信息增益,C4.5是信息增益率。而CART分类树构造的切分点是根据选择的特征和特征值的Gini系数进行对比。CART回归树是根据切分点后的平方误差进行评价的。我们的XGBoost的决策树构建过程中切分点的选择是根据代价函数(代价函数可以是任意的一般函数)的化简值——如下图所示。具体化简过程参照上篇博客。

决策树相关算法——XGBoost原理分析及实例实现(二)

3近似查找算法(Approximate Algorithm)

原因:完全贪心算法,贪婪的遍历所有的切分点,当所有的数据点不能全部加载到内存时,算法就会变的低效。同时在XGBoost分布式学习时也会遇到这样的问题。所以此时需要一些近似算法来获取切分点列表。

XGBoost中的近似方法框架

决策树相关算法——XGBoost原理分析及实例实现(二)

算法讲解:前面一个 for 循环做的工作是,对特征 K 根据该特征分布的分位数找到切割点的候选集合 Sk={sk1,sk2,...,skl} ,这样做的目的是提取出部分的切分点不用遍历所有的切分点。其中获取某个特征K的候选切割点的方式叫 proposal .主要有两种 proposal 方式: global proposallocal proposal .

第二个 for 循环的工作是,将每个特征的取值映射到由这些该特征对应的候选点集划分的分桶(buckets)区间 {skv≥xjk>skv−1} 中,对每个桶(区间)内的样本统计值G、H进行累加统计,最后在这些累计的统计量上寻找最佳分裂点。这样做的主要目的是获取每个特征的候选分割点的G和H量。

存在的疑惑——后面会讲解:

问题1.如何根据特征分布的分位数挑选出候选点集??

问题2. global proposallocal proposal 有什么不同??

3.1分位点(quantile)介绍

举例子说明,一般来说对于一个数据列表有:

决策树相关算法——XGBoost原理分析及实例实现(二)

ϕ−quantile表示rank=⌊ϕ−quantile×N⌋ 的元素

我们需要取出 0.25-quantile (0.25分位点的数),即取出rank为0.25*N的数。

3.2加权分位点(Weighted quantile)介绍

举例子说明,一般来说对于一个数据列表有,取元素的方法为,指定rank(大于0小于1)即可,0.5分位点的元素为3:

决策树相关算法——XGBoost原理分析及实例实现(二)

3.3分位数缩略图(Quantile Sketch)

原因:当一个序列无法全部加载到内存时,常常采用分位数缩略图近似的计算分位点来近似获取特定的查询。

方式:使用随机映射(Random projections)将数据流投射在一个小的存储空间内作为整个数据流的概要,这个小空间存储的概要数据称为略图,可用于近似回答特定的查询。需要保留原序列中的最小值和最大值。

3.4近似算法中的分位数缩略图(Weighted Quantile Sketch)

此部分便是讲述疑惑中的问题1:如何根据特征分布的分位数挑选出候选点集???

通常,一个特征的百分位数可以被用来让候选在数据上进行均匀地分布。我们用一个multi-set: D k =(x 1k ,h 1 ),(x 2k ,h 2 ),…(x nk ,h n ),来表示每个训练实例的第k个特征值以及它的二阶梯度值统计。其中h i 表示i个实例的第k个特征值对应的二阶梯度值统计,可看作i个实例的第k个特征值的权重。至于为什么可以看作是权重作为 疑惑问题3 后面会提到。

如下示例有:

决策树相关算法——XGBoost原理分析及实例实现(二)

一般来说对于加权分位数缩略图的取值是根据Rank的值进行的,Rank计算公式为:

决策树相关算法——XGBoost原理分析及实例实现(二)

Rank 函数,输入为某个特征值 z ,计算的是该特征所有可取值中小于z的特征值的总权重占总的所有可取值的总权重和的比例,输出为一个比例值。于是我们就能用下面这个不等式来寻找候选分离点{s k1 ,s k2 ,s k3 ,⋅,⋅,s kl }

决策树相关算法——XGBoost原理分析及实例实现(二)

其中s k1 是特征k的取值中最小的值x ik ,其中s kl 是特征k的取值中最大的值x ik ,这是分位数缩略图的要求需要保留原序列中的最小值和最大值。ϵ是一个近似比例,或者说是扫描步幅。可以理解为在特征K的取值范围上,按照步幅ϵ挑选出特征K的取值候选点,组成候选点集。起初是从s k1 起,每次增加ϵ∗(s kl −s k1 )作为候选点,加入到候选集中。如此计算的话,这意味着大约是 1/ϵ 个候选点。

此时特征k的取值中最小的值x ik 和特征k的取值中最大的值x ik 来自的数据集D k ,对于D k 的数据集有两种定义,一种是一开始选好,然后每次树切分都不变,也就是说是在总体样本里选最大值s kl 和最小值s k1 ,这就是我们之前定义的 global proposal 。另外一种是树每次确定好切分点的分割后样本也需要进行分割,最大值s kl 和最小值s k1 来自子树的样本集D k ,这就是 local proposal

疑惑问题3,对于特征K的取值为什么权权可以表示为h i 为二阶梯度的值?

首先,将代价函数公式进行转换:

决策树相关算法——XGBoost原理分析及实例实现(二)

最后的代价函数就是一个加权平方误差,权值为h i ,labels为-g i /h i .所以可以将特征K的取值的权重看成对应的h i

分布式加权分位数缩略图:对于需要并行的获取候选集切割点,需要使用分布式加权分位数缩略图,必须包含两个操作m合并erge和修剪prune。分布式加权分位数缩略图具体如何操作需要查看论文XGBoost: A Scalable Tree Boosting System附录1.

4稀疏感知的划分查找算法(Sparsity-aware Split Finding)

数据集稀疏的原因:1.样本中的部分数据缺失。2.统计中过多的 zero entries。3.特征工程中的one-hot encoding。

于是XGBoost中提出了稀疏感知的划分查找算法,如下:

决策树相关算法——XGBoost原理分析及实例实现(二)

如下为带缺省方向的树结构。当在split时相应的feature值缺失时,一个样本可以被归类到缺省方向上。

决策树相关算法——XGBoost原理分析及实例实现(二)

大体思想流程是:在每个树节点上增加一个缺省的方向(default direction),如上图所示,当稀疏矩阵x中的某个特征值缺失时,该样本实例被归类到缺省方向上。默认的缺省方向有两种,一个是左分支和右分支。XGBoost指定的默认缺省方向是从数据中学习到的,并不是随机指定的。

稀疏感知的划分查找算法的理解:至于缺省值的实例分到哪个分支方向,如何学习的问题,稀疏感知的划分查找算法计算切分后的评判标准(公式六)时只关注没有缺失的条目I k .然后再通过将实例以枚举的方式,枚举项为默认分到左分支和默认分到右分支,计算切分前后相差最大的Score,然后将缺失值的实例分到该分支上。


以上所述就是小编给大家介绍的《决策树相关算法——XGBoost原理分析及实例实现(二)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

最优状态估计

最优状态估计

[美] D. 西蒙 / 张勇刚、李宁、奔粤阳 / 国防工业出版社 / 2013-5-1 / 68.00元

《最优状态估计——卡尔曼H∞及非线性滤波》共分为四个部分,全面介绍了最优状态估计的理论和方法。第1部分为基础知识,回顾了线性系统、概率论和随机过程相关知识,介绍了最小二乘法、维纳滤波、状态的统计特性随时间的传播过程。第2部分详细介绍了卡尔曼滤波及其等价形式,介绍了卡尔曼滤 波的扩展形式,包括相关噪声和有色噪声条件下的卡尔曼滤波、稳态滤波、衰减记忆滤波和带约束的卡尔 曼滤波等。第3部分详细介绍了H∞......一起来看看 《最优状态估计》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具