快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

栏目: Python · 发布时间: 4年前

内容简介:本文大约

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

2019 第  44  篇,总第  68  篇文章

本文大约 14000 字,建议收藏阅读

快速入门 PyTorch 教程前两篇文章:

这是快速入门 PyTorch 的第三篇教程也是最后一篇教程,这次将会在 CIFAR10 数据集上简单训练一个图片分类器,将会简单实现一个分类器从网络定义、数据处理和加载到训练网络模型,最后测试模型性能的流程。以及如何使用多 GPUs 训练网络模型。

本文的目录如下:

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

4. 训练分类器

上一节介绍了如何构建神经网络、计算  loss 和更新网络的权值参数,接下来需要做的就是实现一个图片分类器。

4.1 训练数据

在训练分类器前,当然需要考虑数据的问题。通常在处理如图片、文本、语音或者视频数据的时候,一般都采用标准的 Python 库将其加载并转成 Numpy 数组,然后再转回为 PyTorch 的张量。

  • 对于图像,可以采用 Pillow, OpenCV 库;

  • 对于语音,有 scipy 和  librosa ;

  • 对于文本,可以选择原生 Python 或者 Cython 进行加载数据,或者使用 NLTK 和  SpaCy

PyTorch 对于计算机视觉,特别创建了一个 torchvision 的库,它包含一个数据加载器(data loader),可以加载比较常见的数据集,比如  Imagenet, CIFAR10, MNIST 等等,然后还有一个用于图像的数据转换器(data transformers),调用的库是  torchvision.datasets 和  torch.utils.data.DataLoader

在本教程中,将采用 CIFAR10 数据集,它包含 10 个类别,分别是飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。数据集中的图片都是  3x32x32 。一些例子如下所示:

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

4.2 训练图片分类器

训练流程如下:

  1. 通过调用 torchvision 加载和归一化  CIFAR10 训练集和测试集;

  2. 构建一个卷积神经网络;

  3. 定义一个损失函数;

  4. 在训练集上训练网络;

  5. 在测试集上测试网络性能。

4.2.1 加载和归一化 CIFAR10

首先导入必须的包:

import torch
import torchvision
import torchvision.transforms as transforms

torchvision 的数据集输出的图片都是  PILImage ,即取值范围是  [0, 1] ,这里需要做一个转换,变成取值范围是  [-1, 1] , 代码如下所示:

# 将图片数据从 [0,1] 归一化为 [-1, 1] 的取值范围
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

这里下载好数据后,可以可视化部分训练图片,代码如下:

import matplotlib.pyplot as plt
import numpy as np

# 展示图片的函数
def imshow(img):
img = img / 2 + 0.5 # 非归一化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()


# 随机获取训练集图片
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 展示图片
imshow(torchvision.utils.make_grid(images))
# 打印图片类别标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

展示图片如下所示:

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

其类别标签为:

 frog plane   dog  ship

4.2.2 构建一个卷积神经网络

这部分内容其实直接采用上一节定义的网络即可,除了修改 conv1 的输入通道,从 1 变为 3,因为这次接收的是 3 通道的彩色图片。

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

4.2.3 定义损失函数和优化器

这里采用类别交叉熵函数和带有动量的 SGD 优化方法:

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

4.2.4 训练网络

第四步自然就是开始训练网络,指定需要迭代的 epoch,然后输入数据,指定次数打印当前网络的信息,比如 loss 或者准确率等性能评价标准。

import time
start = time.time()
for epoch in range(2):

running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 清空梯度缓存
optimizer.zero_grad()

outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999:
# 每 2000 次迭代打印一次信息
print('[%d, %5d] loss: %.3f' % (epoch + 1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training! Total cost time: ', time.time()-start)

这里定义训练总共 2 个 epoch,训练信息如下,大概耗时为 77s。

[1,  2000] loss: 2.226
[1, 4000] loss: 1.897
[1, 6000] loss: 1.725
[1, 8000] loss: 1.617
[1, 10000] loss: 1.524
[1, 12000] loss: 1.489
[2, 2000] loss: 1.407
[2, 4000] loss: 1.376
[2, 6000] loss: 1.354
[2, 8000] loss: 1.347
[2, 10000] loss: 1.324
[2, 12000] loss: 1.311

Finished Training! Total cost time: 77.24696755409241

4.2.5 测试模型性能

训练好一个网络模型后,就需要用测试集进行测试,检验网络模型的泛化能力。对于图像分类任务来说,一般就是用准确率作为评价标准。

首先,我们先用一个 batch 的图片进行小小测试,这里  batch=4 ,也就是 4 张图片,代码如下:

dataiter = iter(testloader)
images, labels = dataiter.next()

# 打印图片
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

图片和标签分别如下所示:

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

GroundTruth:    cat  ship  ship plane

然后用这四张图片输入网络,看看网络的预测结果:

# 网络输出
outputs = net(images)

# 预测结果
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))

输出为:

Predicted:    cat  ship  ship  ship

前面三张图片都预测正确了,第四张图片错误预测飞机为船。

接着,让我们看看在整个测试集上的准确率可以达到多少吧!

correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

输出结果如下

Accuracy of the network on the 10000 test images: 55 %

这里可能准确率并不一定一样,教程中的结果是 51% ,因为权重初始化问题,可能多少有些浮动,相比随机猜测 10 个类别的准确率(即 10%),这个结果是不错的,当然实际上是非常不好,不过我们仅仅采用 5 层网络,而且仅仅作为教程的一个示例代码。

然后,还可以再进一步,查看每个类别的分类准确率,跟上述代码有所不同的是,计算准确率部分是 c = (predicted == labels).squeeze() ,这段代码其实会根据预测和真实标签是否相等,输出 1 或者 0,表示真或者假,因此在计算当前类别正确预测数量时候直接相加,预测正确自然就是加 1,错误就是加 0,也就是没有变化。

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1


for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))

输出结果,可以看到猫、鸟、鹿是错误率前三,即预测最不准确的三个类别,反倒是船和卡车最准确。

Accuracy of plane : 58 %
Accuracy of car : 59 %
Accuracy of bird : 40 %
Accuracy of cat : 33 %
Accuracy of deer : 39 %
Accuracy of dog : 60 %
Accuracy of frog : 54 %
Accuracy of horse : 66 %
Accuracy of ship : 70 %
Accuracy of truck : 72 %

4.3 在 GPU 上训练

深度学习自然需要 GPU 来加快训练速度的。所以接下来介绍如果是在 GPU 上训练,应该如何实现。

首先,需要检查是否有可用的 GPU 来训练,代码如下:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

输出结果如下,这表明你的第一块 GPU 显卡或者唯一的 GPU 显卡是空闲可用状态,否则会打印 cpu

cuda:0

既然有可用的 GPU ,接下来就是在 GPU 上进行训练了,其中需要修改的代码如下,分别是需要将网络参数和数据都转移到 GPU 上:

net.to(device)
inputs, labels = inputs.to(device), labels.to(device)

修改后的训练部分代码:

import time
# 在 GPU 上训练注意需要将网络和数据放到 GPU 上
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

start = time.time()
for epoch in range(2):

running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 清空梯度缓存
optimizer.zero_grad()

outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999:
# 每 2000 次迭代打印一次信息
print('[%d, %5d] loss: %.3f' % (epoch + 1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training! Total cost time: ', time.time() - start)

注意,这里调用 net.to(device) 后,需要定义下优化器,即传入的是 CUDA 张量的网络参数。训练结果和之前的类似,而且其实因为这个网络非常小,转移到 GPU 上并不会有多大的速度提升,而且我的训练结果看来反而变慢了,也可能是因为我的笔记本的 GPU 显卡问题。

如果需要进一步提升速度,可以考虑采用多 GPUs,也就是下一小节的内容。

本小节教程:

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

本小节的代码:

https://github.com/ccc013/DeepLearning_Notes/blob/master/Pytorch/practise/train_classifier_example.ipynb

5. 数据并行

这部分教程将学习如何使用 DataParallel 来使用多个 GPUs 训练网络。

首先,在 GPU 上训练模型的做法很简单,如下代码所示,定义一个 device 对象,然后用  .to() 方法将网络模型参数放到指定的 GPU 上。

device = torch.device("cuda:0")
model.to(device)

接着就是将所有的张量变量放到 GPU 上:

mytensor = my_tensor.to(device)

注意,这里 my_tensor.to(device) 是返回一个  my_tensor 的新的拷贝对象,而不是直接修改  my_tensor 变量,因此你需要将其赋值给一个新的张量,然后使用这个张量。

Pytorch 默认只会采用一个 GPU,因此需要使用多个 GPU,需要采用 DataParallel ,代码如下所示:

model = nn.DataParallel(model)

这代码也就是本节教程的关键,接下来会继续详细介绍。

5.1 导入和参数

首先导入必须的库以及定义一些参数:

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

这里主要定义网络输入大小和输出大小, batch 以及图片的大小,并定义了一个  device 对象。

5.2 构建一个假数据集

接着就是构建一个假的(随机)数据集。实现代码如下:

class RandomDataset(Dataset):

def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)

def __getitem__(self, index):
return self.data[index]

def __len__(self):
return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)

5.3 简单的模型

接下来构建一个简单的网络模型,仅仅包含一层全连接层的神经网络,加入 print() 函数用于监控网络输入和输出  tensors 的大小:

class Model(nn.Module):
# Our model

def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)

def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())

return output

5.4 创建模型和数据平行

这是本节的核心部分。首先需要定义一个模型实例,并且检查是否拥有多个 GPUs,如果是就可以将模型包裹在 nn.DataParallel ,并调用  model.to(device) 。代码如下:

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)

model.to(device)

5.5 运行模型

接着就可以运行模型,看看打印的信息:

for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())

输出如下:

In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

5.6 运行结果

如果仅仅只有 1 个或者没有 GPU ,那么 batch=30 的时候,模型会得到输入输出的大小都是 30。但如果有多个 GPUs,那么结果如下:

2 GPUs

# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 GPUs

Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8 GPUs

Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

5.7 总结

DataParallel 会自动分割数据集并发送任务给多个 GPUs 上的多个模型。然后等待每个模型都完成各自的工作后,它又会收集并融合结果,然后返回。

更详细的数据并行教程:

https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html

本小节教程:

https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html

小结

第三篇主要是简单实现了一个图像分类的流程,选择数据集,构建网络模型,定义损失函数和优化方法,训练网络,测试网络性能,并检查每个类别的准确率,当然这只是很简单的过一遍流程。

然后就是使用多 GPUs 训练网络的操作。

接下来你可以选择:

  • 训练一个神经网络来玩视频游戏:https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

  • 在 imagenet 上训练 ResNet:https://github.com/pytorch/examples/tree/master/imagenet

  • 采用 GAN 训练一个人脸生成器:https://github.com/pytorch/examples/tree/master/dcgan

  • 采用循环 LSTM 网络训练一个词语级别的语言模型:https://github.com/pytorch/examples/tree/master/word_language_model

  • 更多的例子:https://github.com/pytorch/examples

  • 更多的教程:https://pytorch.org/tutorials

  • 在 Forums 社区讨论 PyTorch:https://discuss.pytorch.org/

欢迎关注我的微信公众号--机器学习与计算机视觉,或者扫描下方的二维码,大家一起交流,学习和进步!

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

往期精彩推荐

机器学习系列

Github项目 & 资源教程推荐


以上所述就是小编给大家介绍的《快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Haskell Programming from first principles

Haskell Programming from first principles

Christopher Allen、Julie Moronuki / 2015 / USD 59.00

I am writing this book because I had a hard time learning Haskell. It doesn't have to be that way. I've spent the last couple years actively teaching Haskell online and in person. Along the way, I ......一起来看看 《Haskell Programming from first principles》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

html转js在线工具
html转js在线工具

html转js在线工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具