Why computing standard deviation in pandas and NumPy yields different results?

栏目: IT技术 · 发布时间: 5年前

Why computing standard deviation in pandas and NumPy yields different results?

Curious? Let’s talk about statistics, populations, and samples…

Why computing standard deviation in pandas and NumPy yields different results?

Image by Gerd Altmann from Pixabay

How many of you have noticed that when you compute standard deviation using pandas and compare it to a result of NumPy function you will get different numbers?

I bet some of you did not realize this fact. And even if you did you’re maybe asking: Why?

In this short article, we will demonstrate that:

standard deviations results are indeed different using both libraries (at least at the first glance),
discuss why is that so (focusing on populations, samples, and how this influences calculation of standard deviation for each library)
and finally show you how to obtain same results using pandas and NumPy (in the end they should agree on such a simple computation that standard deviation is)

Let’s get started.


以上所述就是小编给大家介绍的《Why computing standard deviation in pandas and NumPy yields different results?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

零工经济

零工经济

Diane Mulcahy / 陈桂芳 / 中信出版集团股份有限公司 / 2017-11-1 / CNY 39.00

// 国内第一本讲述“零工经济”概念的图书! // 互联网时代,你的技能与兴趣可以与市场需求产生更佳的匹配! // 通过工作模式的转型,你的财务状况可以获得更多的灵活性与稳定性! 如果把当前的工作世界看作一把尺子,设想它一头是传统意义上由企业提供的职业阶梯,另一头是失业,那么两头之间范围广、种类多的工作选择便是零工经济。它包括咨询顾问、承接协定、兼职工作、临时工作、自由职业、个体......一起来看看 《零工经济》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具