React Fiber源码分析 第三篇(异步状态)

栏目: IOS · Android · 发布时间: 5年前

内容简介:React Fiber是React在V16版本中的大更新,利用了闲余时间看了一些源码,做个小记录~1.调用

系列文章

前言

React Fiber是React在V16版本中的大更新,利用了闲余时间看了一些源码,做个小记录~

流程图

React Fiber源码分析 第三篇(异步状态)

源码分析

1.调用 setState 时, 会调用 classComponentUpdaterenqueueSetState 方法, 同时将新的 state 作为 payload 参数传进 enqueueSetState 会先调用 requestCurrentTime 获取一个 currentTime

function requestCurrentTime() {
  // 维护两个时间 一个renderingTime 一个currentSechedulerTime
 //  rederingTime 可以随时更新  currentSechedulerTime只有在没有新任务的时候才更新
  if (isRendering) {
    return currentSchedulerTime;
  }
  findHighestPriorityRoot();
  if (nextFlushedExpirationTime === NoWork || nextFlushedExpirationTime === Never) {
    recomputeCurrentRendererTime();
    currentSchedulerTime = currentRendererTime;
    return currentSchedulerTime;
  }
  return currentSheculerTime

2.通过获取到的 currentTime , 调用 computeExpirationForFiber ,计算该fiber的优先级

if (fiber.mode & AsyncMode) {
      if (isBatchingInteractiveUpdates) {
        // This is an interactive update
        expirationTime = computeInteractiveExpiration(currentTime);
      } else {
        // This is an async update
        expirationTime = computeAsyncExpiration(currentTime);
      }
      ...
    }

3.这个函数其他点比较简单, 里面主要有下面 这个判断要说明一下, 如果是属于异步更新的话,会根据是 交互引起的更新 还是其他更新 来调用不同的函数 computeInteractiveExpiration和computeAsyncExpiration

可以看到这两个函数最后返回的都是 computeExpirationBucket 函数的结果, 只是入参不同, computeInteractiveExpiration的参数是500, 100, computeAsyncExpiration的参数是5000, 250 , 然后看 computeExpirationBucket 函数可以看到, 第二个参数(500和5000)越大,则返回的 expirationTime 越大, 也就是说 computeInteractiveExpiration 的更新优先级高于 computeAsyncExpiration , 则交互的优先级高于其他

获得优先级后则和同步更新一样, 创建 update 并放进队列, 然后调用 sheuduleWork

var classComponentUpdater = {
  isMounted: isMounted,
  enqueueSetState: function (inst, payload, callback) {
    var fiber = get(inst);
   // 获得优先级
    var currentTime = requestCurrentTime();
    var expirationTime = computeExpirationForFiber(currentTime, fiber);
   // 创建更新
    var update = createUpdate(expirationTime);
    update.payload = payload;
    if (callback !== undefined && callback !== null) {
      update.callback = callback;
    }

    enqueueUpdate(fiber, update);
    scheduleWork(fiber, expirationTime);
  },

4.接下来的步骤和同步一样, 直到同步调用的是 performSyncWork 函数, 而异步调用的是 scheduleCallbackWithExpirationTime 函数

scheduleCallbackWithExpirationTime函数首先判断是否存在 callback 正在进行中, 判断现有 expirationTime 和其优先级,若优先级比较低则直接返回, 否则设置现在的 fiber 任务为新的 callback ,并把原来的回调从列表中移除

function scheduleCallbackWithExpirationTime(root, expirationTime) {
  if (callbackExpirationTime !== NoWork) {
    //  判断优先级
    if (expirationTime > callbackExpirationTime) {
      // Existing callback has sufficient timeout. Exit.
      return;
    } else {
      if (callbackID !== null) {
        // 取消, 从回调列表中删除
        schedule.unstable_cancelScheduledWork(callbackID);
      }
    }
    // The request callback timer is already running. Don't start a new one.
  } 
  // 设置新的callback和callbackExiporationTime
  callbackExpirationTime = expirationTime;
  var currentMs = schedule.unstable_now() - originalStartTimeMs;
  var expirationTimeMs = expirationTimeToMs(expirationTime);
  // 计算是否超时 
  var timeout = expirationTimeMs - currentMs;
  callbackID = schedule.unstable_scheduleWork(performAsyncWork, { timeout: timeout });
}

5.接下来调用 schedule.unstable_scheduleWork(performAsyncWork, { timeout: timeout }) 函数, 并生成一个节点, 存储回调函数和超时时间,插入到回调列表, 并根据超时排序, 调用 ensureHostCallBackIsScheduled 函数,最后返回该节点

function unstable_scheduleWork(callback, options) {
  var currentTime = exports.unstable_now();

  var timesOutAt; 
  // 获取超时时间
  if (options !== undefined && options !== null && options.timeout !== null && options.timeout !== undefined) {
    // Check for an explicit timeout 
    timesOutAt = currentTime + options.timeout;
  } else {
    // Compute an absolute timeout using the default constant.
    timesOutAt = currentTime + DEFERRED_TIMEOUT;
  }
 // 生成一个节点, 存储回调函数和超时时间
  var newNode = {
    callback: callback,
    timesOutAt: timesOutAt,
    next: null,
    previous: null
  };

  // 插入到回调列表, 并根据超时排序, 最后返回该节点
  if (firstCallbackNode === null) {
    // This is the first callback in the list.
    firstCallbackNode = newNode.next = newNode.previous = newNode;
    ensureHostCallbackIsScheduled(firstCallbackNode);
  } else {
    ...var previous = next.previous;
    previous.next = next.previous = newNode;
    newNode.next = next;
    newNode.previous = previous;
  }

  return newNode;
}

6. ensureHostCallBackIsScheduled 函数如名, 相对比较简单

function ensureHostCallbackIsScheduled() {
  if (isPerformingWork) {
    // Don't schedule work yet; wait until the next time we yield.
    return;
  }
  // Schedule the host callback using the earliest timeout in the list.
  var timesOutAt = firstCallbackNode.timesOutAt;
  if (!isHostCallbackScheduled) {
    isHostCallbackScheduled = true;
  } else {
    // Cancel the existing host callback.
    cancelCallback();
  }
  requestCallback(flushWork, timesOutAt);
}

7.往下看 requestCallback , 这里说的如果已经在执行任务的话, 就必须有一个错误被抛出(抛出的错误是啥??),同时不要等待下一帧, 尽快开始新事件

如果如果当前没有调度帧回调函数,我们需要进行一个调度帧回调函数, 并设置 isAnimationFrameScheduledtrue ,

接着执行 requestAnimationFrameWithTimeout ;函数

requestCallback = function (callback, absoluteTimeout) {
    scheduledCallback = callback;
    timeoutTime = absoluteTimeout;
    if (isPerformingIdleWork) {
      // 如果已经在执行任务的话, 就必须有一个错误被抛出(抛出的错误是啥??),同时不要等待下一帧, 尽快开始新事件
      window.postMessage(messageKey, '*');
    } else if (!isAnimationFrameScheduled) {
      isAnimationFrameScheduled = true;
      requestAnimationFrameWithTimeout(animationTick);
    }
  };

8. requestAnimationFrameWithTimeout 函数就是执行一个异步操作, 执行完毕后, 假设此时又有N个回调任务进入, 同时原来的回调还没有进行, 则回到 scheduleCallbackWithExpirationTime 函数上,

分为两个分支:

  1. 假设优先级低于目前的回调任务, 则直接返回(已经把root加到root队列中)
  2. 优先级高于目前的回调任务, 将目前的回调任务从列表中移除, 并将 callBackID 设为传入的回调, 接下来的路线与上面一致, 假设该传入的回调超时最早, 则会进入到 cancelCallback 函数,重置各变量, 并进入到 requestCallback 函数, 此时除了赋值操作,没有其他动作

到了这时候, 已经把新的回调替换正在进行的回调到回调列表。

函数正常执行, 调用 callback , 即 animationTick 函数

cancelCallback = function () {
    scheduledCallback = null;
    isIdleScheduled = false;
    timeoutTime = -1;
  };
var ANIMATION_FRAME_TIMEOUT = 100;
var rAFID;
var rAFTimeoutID;
var requestAnimationFrameWithTimeout = function (callback) {
  // schedule rAF and also a setTimeout
  rAFID = localRequestAnimationFrame(function (timestamp) {
    // cancel the setTimeout
    localClearTimeout(rAFTimeoutID);
    callback(timestamp);
  });
  rAFTimeoutID = localSetTimeout(function () {
    // cancel the requestAnimationFrame
    localCancelAnimationFrame(rAFID);
    callback(exports.unstable_now());
  }, ANIMATION_FRAME_TIMEOUT);
};

9. animationTick 一个是把 isAnimationFrameScheduled 状态设为 false , 即不在调度帧回调的状态, 同时计算帧到期时间 frameDeadline , 判断是否在帧回调的状态, 否的话调用 window.postMessage ,并设置 isIdleScheduled 状态为 true

假设此时, 有N个回调进入, 分为两个情况:

1.假设优先级低于目前的回调任务, 则直接返回(已经把root加到root队列中)

2.优先级高于目前的回调任务, 将目前的回调任务从列表中移除, 并将 callBackID 设为传入的回调, 接下来的路线与上面一致,一直到 animationTick 函数,因为 postMessagesetTImeout 更快执行,所以此时 isIdleScheduledfalse ,和之前一样正常执行。

var animationTick = function (rafTime) {
    isAnimationFrameScheduled = false;
    ...
    ...
    // 每帧到期时间为33ms
    frameDeadline = rafTime + activeFrameTime;
    if (!isIdleScheduled) {
      isIdleScheduled = true;
      window.postMessage(messageKey, '*');
    }
  };

10. postMessage会执行idleTick , 首先把 isIdleScheduleddidTimeout置为false ,

先判断帧到期时间和超时时间是否小于当前时间, 如果是的话, 则置 didTimeout为true ,

如果帧到期, 但超时时间小于当前时间, 则置 isAnimationFrameScheduled 为false , 并调用 requestAnimationFrameWithTimeout , 即进入下一帧

如果帧未到期, 则调用 callbak 函数, 并把 isPerformingIdleWork 置为 true

idleTick会先执行 callback , 完成后才将 isPerformingIdleWork 置为 false , 执行 callback 的时候会传入 didTimeout 作为参数, callback为flushWork

var idleTick = function (event) {
    ...
    isIdleScheduled = false;

    var currentTime = exports.unstable_now();

    var didTimeout = false;
    if (frameDeadline - currentTime <= 0) {
      // 帧过期
      if (timeoutTime !== -1 && timeoutTime <= currentTime) {
        // 回调超时
        didTimeout = true;
      } else {
        // No timeout.
        if (!isAnimationFrameScheduled) {
          // 到下一帧继续任务
          isAnimationFrameScheduled = true;
          requestAnimationFrameWithTimeout(animationTick);
        }
        // Exit without invoking the callback.
        return;
      }
    }

    timeoutTime = -1;
    var callback = scheduledCallback;
    scheduledCallback = null;
    if (callback !== null) {
      isPerformingIdleWork = true;
      try {
        callback(didTimeout);
      } finally {
        isPerformingIdleWork = false;
      }
    }
  };

11. flushwork 首先把 isPerformingWork 置为 true , 然后把 didTimeout 赋值给 deallinObject 对象, 接下来进行判断

如果已经过了帧的结束期, 则判断链表中有哪个节点已超时, 并循环调用 flushFirstCallback 函数解决超时节点,

如果还没有过帧的结束期, 则调用 flushFirstCallback 函数处理链表中的第一个节点, 循环处理一直到该帧结束

最后, flushwork 函数会将 isPerformingWork 置为 false , 并判断是否还有任务 有则执行 ensureHostCallbackIsScheduled 函数

function flushWork(didTimeout) {
  isPerformingWork = true;
  deadlineObject.didTimeout = didTimeout;
  try {
    if (didTimeout) {
      while (firstCallbackNode !== null) {
        var currentTime = exports.unstable_now();
        if (firstCallbackNode.timesOutAt <= currentTime) {
          do {
            flushFirstCallback();
          } while (firstCallbackNode !== null && firstCallbackNode.timesOutAt <= currentTime);
          continue;
        }
        break;
      }
    } else {
      // Keep flushing callbacks until we run out of time in the frame.
      if (firstCallbackNode !== null) {
        do {
          flushFirstCallback();
        } while (firstCallbackNode !== null && getFrameDeadline() - exports.unstable_now() > 0);
      }
    }
  } finally {
    isPerformingWork = false;
    if (firstCallbackNode !== null) {
      // There's still work remaining. Request another callback.
      ensureHostCallbackIsScheduled(firstCallbackNode);
    } else {
      isHostCallbackScheduled = false;
    }
  }
}

12.继续往下看, 则是 flushFirstCallback 函数,先把该节点从链表中清掉, 然后调用 callback 函数, 并带入 deadlineObject 作为参数

function flushFirstCallback(node) {
  var flushedNode = firstCallbackNode;

  //从链表中清理掉该节点, 这样哪怕出错了, 也能保留原链表状态
  var next = firstCallbackNode.next;
  if (firstCallbackNode === next) {
    // This is the last callback in the list.
    firstCallbackNode = null;
    next = null;
  } else {
    var previous = firstCallbackNode.previous;
    firstCallbackNode = previous.next = next;
    next.previous = previous;
  }

  flushedNode.next = flushedNode.previous = null;

  // Now it's safe to call the callback.
  var callback = flushedNode.callback;
  callback(deadlineObject);
}

13.接下来的就是 performAsyncWork 函数,如果 didTimeout为true , 则表明至少有一个更新已过期, 迭代所有root任务, 把已过期的 root的nextExpirationTimeToWorkOn 重置为当前时间 currentTime .

然后调用 performWork 函数

function performAsyncWork(dl) {
  if (dl.didTimeout) {
    // 刷新所有root的nextEpirationTimeToWorkOn
    if (firstScheduledRoot !== null) {
      recomputeCurrentRendererTime();
      var root = firstScheduledRoot;
      do {
        didExpireAtExpirationTime(root, currentRendererTime);
        // The root schedule is circular, so this is never null.
        root = root.nextScheduledRoot;
      } while (root !== firstScheduledRoot);
    }
  }
  performWork(NoWork, dl);
}

14. performWork 函数在之前已经分析过了, 这里主要看存在 deadline 时的操作, 在帧未到期 或者 当前渲染时间大于等于 nextFlushedExpirationTime 时才执行 performWorkOnRoot , 并将 currentRendererTime >= nextFlushedExpirationTime 作为第三个参数传入, 一直循环处理任务,

最后清除 callbackExpirationTime, callBackId , 同时, 如果还有任务的话, 则继续调用 scheduleCallbackWithExpirationTime(nextFlushedRoot, nextFlushedExpirationTime) ;函数进入到回调

function performWork(minExpirationTime, dl) {
  deadline = dl;

  // Keep working on roots until there's no more work, or until we reach
  // the deadline.
  findHighestPriorityRoot();

  if (deadline !== null) {
    recomputeCurrentRendererTime();
    currentSchedulerTime = currentRendererTime;while (nextFlushedRoot !== null && nextFlushedExpirationTime !== NoWork && (minExpirationTime === NoWork || minExpirationTime >= nextFlushedExpirationTime) && (!deadlineDidExpire || currentRendererTime >= nextFlushedExpirationTime)) {
      performWorkOnRoot(nextFlushedRoot, nextFlushedExpirationTime, currentRendererTime >= nextFlushedExpirationTime);
      findHighestPriorityRoot();
      recomputeCurrentRendererTime();
      currentSchedulerTime = currentRendererTime;
    }
  } 
  if (deadline !== null) {
    callbackExpirationTime = NoWork;
    callbackID = null;
  }
  // If there's work left over, schedule a new callback.
  if (nextFlushedExpirationTime !== NoWork) {
    scheduleCallbackWithExpirationTime(nextFlushedRoot, nextFlushedExpirationTime);
  }

  // Clean-up.
  deadline = null;
  deadlineDidExpire = false;

  finishRendering();
}

15.接下来看异步状态下的 performWorkOnRoot 函数。基本操作和同步一样, 在进入到 renderRoot(root, _isYieldy, isExpired) ;函数时, 会根据是否已超时将 isYieldy 置为true或者false, 异步状态下未超时为false,

renderRoot和同步一样, 最后执行 workLoop(isYieldy)

workLoop在未过期的情况下, 会执行 shouldYield() 函数来判断是否执行 nextUnitOfWork , 和同步一样, 这里只需要关注 shouldYied 函数

function workLoop(isYieldy) {
  if (!isYieldy) {
    // Flush work without yielding
    while (nextUnitOfWork !== null) {
      nextUnitOfWork = performUnitOfWork(nextUnitOfWork);
    }
  } else {
    // Flush asynchronous work until the deadline runs out of time.
    while (nextUnitOfWork !== null && !shouldYield()) {
      nextUnitOfWork = performUnitOfWork(nextUnitOfWork);
    }
  }
}

16. shouldYield 函数, 如果 deadlineDidExpire为true, 即帧已到期 , 直接返回true,

如果 deadline不存在, 并且帧未到期, 则返回false , 可以执行单元

否则将 deadlineDidExpire置为true

function shouldYield() {
  if (deadlineDidExpire) {
    return true;
  }
  if (deadline === null || deadline.timeRemaining() > timeHeuristicForUnitOfWork) {
    // Disregard deadline.didTimeout. Only expired work should be flushed
    // during a timeout. This path is only hit for non-expired work.
    return false;
  }
  deadlineDidExpire = true;
  return true;
}

总结

源码分析到这里就结束啦,下一篇做一个总结,不然就是流水账一样的,容易忘记


以上所述就是小编给大家介绍的《React Fiber源码分析 第三篇(异步状态)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Windows核心编程(第5版)

Windows核心编程(第5版)

Jeffrey Richter、Christophe Nasarre / 葛子昂、周靖、廖敏 / 清华大学出版社 / 2008-9 / 99.00元

这是一本经典的Windows核心编程指南,从第1版到第5版,引领着数十万程序员走入Windows开发阵营,培养了大批精英。. 作为Windows开发人员的必备参考,本书是为打算理解Windows的C和C++程序员精心设计的。第5版全面覆盖Windows XP,Windows Vista和Windows Server 2008中的170个新增函数和Windows特性。书中还讲解了Windows......一起来看看 《Windows核心编程(第5版)》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

URL 编码/解码
URL 编码/解码

URL 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器