package main import ( "fmt" ) type TreeNode struct { Val int Left *TreeNode Right *TreeNode } type stack struct { BinTree []*TreeNode Top int } func (nodeStack *stack) push(node *TreeNode) { nodeStack.BinTree = append(nodeStack.BinTree, node) nodeStack.Top++ } func (nodeStack *stack) pop() *TreeNode { var res *TreeNode nodeStack.Top-- if nodeStack.Top < 0 { res = nil } else { res = nodeStack.BinTree[nodeStack.Top] } nodeStack.BinTree = nodeStack.BinTree[:nodeStack.Top] return res } func inorderTraversal1(root *TreeNode) []int { res := []int{} myStack := &stack{[]*TreeNode{}, 0} for nil != root || myStack.Top != 0 { for nil != root { myStack.push(root) root = root.Left } root = myStack.pop() res = append(res, root.Val) root = root.Right } return res } func inorderTraversal(root *TreeNode) []int { res := []int{} myStack := &stack{[]*TreeNode{}, 0} for nil != root || myStack.Top != 0 { for nil != root { myStack.push(root) root = root.Left } root = myStack.pop() res = append(res, root.Val) root = root.Right } return res } /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func buildTree(inorder []int, postorder []int) *TreeNode { lens = len(inorder) mid := 0 for i := 0; i < lens; i++ { if inorder[i] == postorder[lens-1] { mid = i } } return &TreeNode{inorder[mid].Val, buildTree(inorder[:mid], postorder[:mid]), buildTree(inorder[mid+1:lens], postorder[mid:lens-1])} } /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func isSymmetric(root *TreeNode) bool { if nil == root { return true } return isSym(root.Left, root.Right) } func isSym(left, right *TreeNode) bool { if nil == left && nil == right { return true } if nil == left || nil == right || left.Val != right.Val { return false } outerRes := isSym(left.Left, right.Right) innerRes := isSym(left.right, right.Left) return outerRes && innerRes } func isSymmetric1(root *TreeNode) bool { s := *stack{0, nil, nil} if root == nil { return true } stack.push(root.Left) stack.push(root.Right) for s.Top > 0 { left := s.pop() right := s.pop() if left == nil && right == nil { continue } if left == nil || right == nil || left.Val == right.Val { return false } s.push(left.Left) s.push(right.Right) s.push(left.Right) s.push(right.Left) } return true } func maxDepth(root *TreeNode) int { if nil == root { return 0 } leftD := maxDepth(root.Left) rightD := maxDepth(root.Right) if leftD > rightD { return leftD + 1 } else { return rightD + 1 } } func maxDepth1(root *TreeNode) int { deps := 0 que := []*TreeNode{root} lens := len(que) for lens > 0 { for i := 0; i < lens; i++ { if nil == que[i] { continue } que = append(que, que[i].Left) que = append(que, que[i].Right) } que = que[lens:] lens = lens(que) if lens > 0 { deps++ } } return deps } func levelOrderBottom(root *TreeNode) [][]int { res := [][]int{} if nil == root { return res } que := []*TreeNode{root} lens := len(que) for lens > 0 { level := []int{} for i := 0; i < lens; i++ { level = append(level, que[i].Val) if nil != que[i].Left { que = append(que, que[i].Left) } if nil != que[i].Right { que = append(que, que[i].Right) } } que = que[lens:] lens = len(que) res = append([][]int{level}, res) } return res } func levelOrderBottom1(root *TreeNode) [][]int { res := [][]int{} res = levelOrder(0, root, res) } func levelOrder(level int, root *TreeNode, res [][]int) [][]int { if nil == root { return res } if _, exist := res[level]; !exist { res = append(res, []int) } res[level] = append(res[level], root.Val) res = levelOrder(level+1, root.Left, res) return levelOrder(level+1, root.Right, res) } func minDepth(root *TreeNode) int { if nil == root { return 0 } left := minDepth(root.Left) right := minDepth(root.Right) if left == 0 { return right + 1 } else if right == 0 { return left + 1 } else { if left > right { return right + 1 } else { return left + 1 } } } func isBalanced(root *TreeNode) bool { res := false dep := isBlan(root) if dep > 0 { res = true } return res } func isBlan(root *TreeNode) int { if nil == root { return 0 } left := isBlan(root.Left) right := isBlan(root.Right) if left < 0 || right < 0 { return -1 } diff := left - right if diff < -1 || diff > 1 { return -1 } else if diff >= 0 { return left + 1 } else { return right + 1 } } func zigzagLevelOrder(root *TreeNode) [][]int { res := [][]int{} return recursive(0, root, res) } func recursive(dep int, root *TreeNode, res [][]int) [][]int { if nil == root { return res } if dep+1 > lens(res) { res = append(res, []int) } if dep/2 == 0 { res[dep] = append(res[dep], root.Val) } else { res[dep] = append([]int{root.Val}, res[dep]...) } res := recursive(dep+1, root.Left, res) return recursive(dep+1, root.Right, res) } func zigzagLevelOrder1(root *TreeNode) [][]int { res := [][]int{} que := []*TreeNode{root} lens := len(que) dep := 0 for lens > 0 { level := []int{} for i := 0; i < lens; i++ { if nil == que[i] { continue } if dep%2 == 0 { level = append(level, que[i].Val) } else { level = append([]int{que[i].Val}, level...) } que = append(que, que[i].Left) que = append(que, que[i].Right) } res = append(res, level) que = que[lens:] lens = len(que) dep++ } } func buildTree(preorder []int, inorder []int) *TreeNode { if len(preorder) == 0 { return nil } head := preorder[0] index := 0 for i := 0; i < len(inorder); i++ { if inorder[i] == head { index = i } } return &TreeNode{root.Val, buildTree(preorder[1:index+1], inorder[:index]), buildTree(preorder[index+1:], inorder[index+1:])} } func hasPathSum(root *TreeNode, sum int) bool { if root == nil { return false } if root.Left == nil && root.Right == nil { return root.Val == sum } sum -= sum - root.Val if root.Left != nil { leftRes := hasPathSum(root.Left, sum) } if root.Left != nil { rightRes := hasPathSum(root.Right, sum) } return leftRes && rightRes } func insertionSortList(head *ListNode) *ListNode { myHead := &ListNode{0, nil} for head != nil { node := head for nowHead := myHead; nowHead.Next != nil; nowHead = nowHead.Next { if nowHead.Next.Val > node.Val { node.Next = nowHead.Next nowHead.Next = node break } } } return myHead } func rightSideView(root *TreeNode) []int { que := []*TreeNode{root} lens := 1 res := []int{} for lens > 0 { level := []int{} for i := 0; i < lens; i++ { if que[i] == nil { continue } level = append(level, que[i].Val) que = append(que, que[i].Left) que = append(que, que[i].Right) } res = append(res, level[lens-1]) que = que[:lens] lens = len(que) } return res } func rangeSumBST(root *TreeNode, L int, R int) int { sum := 0 if nil == root { return 0 } if root.Val >= L { sum += rangeSumBST(root.Left, L, R) } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- leetcode-二叉树
- 【Leetcode】101. 对称二叉树
- leetcode题解(二叉树和递归问题)
- 【Leetcode】102. 二叉树的层次遍历
- 【Leetcode】104. 二叉树的最大深度
- 【Leetcode】103. 二叉树的锯齿形层次遍历
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Machine Learning in Action
Peter Harrington / Manning Publications / 2012-4-19 / GBP 29.99
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. ......一起来看看 《Machine Learning in Action》 这本书的介绍吧!